
SafeNet ProtectApp
for .NET

User Guide
Software Version: 5.1.1
Documentation Version: 20100913

Preface

© 2010 SafeNet, Inc All rights reserved

All intellectual property is protected by copyright. All trademarks and product names used or referred to are the copyright of
their respective owners. No part of this document may be reproduced, stored in a retrieval system or transmitted in any form
or by any means, electronic, mechanical, chemical, photocopy, recording or otherwise without the prior written permission of
SafeNet.

SafeNet makes no representations or warranties with respect to the contents of this document and specifically disclaims any
implied warranties of merchantability or fitness for any particular purpose. Furthermore, SafeNet reserves the right to revise
this publication and to make changes from time to time in the content hereof without the obligation upon SafeNet to notify any
person of organization of any such revisions or changes.

SafeNet invites constructive comments on the contents of this document. These comments, together with your personal and/
or company details, should be sent to the address below.

4690 Millennium Drive
Belcamp, Maryland 21017
USA

Disclaimers

The foregoing integration was performed and tested only with specific versions of equipment and software and only in the
configuration indicated. If your setup matches exactly, you should expect no trouble, and Customer Support can assist with
any missteps. If your setup differs, then the foregoing is merely a template and you will need to adjust the instructions to fit
your situation. Customer Support will attempt to assist, but cannot guarantee success in setups that we have not tested.

This product contains software that is subject to various public licenses. The source code form of such software and all
derivative forms thereof can be copied from the following website: http://c3.safenet-inc.com/

We have attempted to make these documents complete, accurate, and useful, but we cannot guarantee them to be perfect.
When we discover errors or omissions, or they are brought to our attention, we endeavor to correct them in succeeding
releases of the product.

Technical Support

If you encounter a problem while installing, registering or operating this product, please make sure that you have read the
documentation. If you cannot resolve the issue, please contact your supplier or SafeNet support.

SafeNet support operates 24 hours a day, 7 days a week. Your level of access to this service is governed by the support plan
arrangements made between SafeNet and your organization. Please consult this support plan for further information about
your entitlements, including the hours when telephone support is available to you.

Technical Support Contact Information:

Phone: 800-545-6608, 410-931-7520
Email: support@safenet-inc.com

Table of Contents
ABOUT THIS GUIDE. 8

Using This Guide . 8
Documentation Conventions . 9

Code Samples . 9
Notes and Cautions . 9

CHAPTER 1 OVERVIEW . 10
General System Architecture . 10
Hardware and Software Requirements . 11
Supported Cryptographic Operations . 12
Supported Content . 12

CHAPTER 2 INSTALLING PROTECTAPP FOR .NET 13
Obtaining ProtectApp for .NET Software . 13
Installing ProtectApp for .NET . 14

The NAE_Properties_Config Registry Key . 16
The Installed Directory . 17

Upgrading ProtectApp for .NET . 17
Properties File . 18
Examples Folder . 18

Repairing ProtectApp for .NET . 18
Uninstalling ProtectApp for .NET . 18
The Sample Application . 19

Compiling the Sample Application with Visual Studio 2010 19
Before You Begin . 20

CHAPTER 3 CONFIGURING THE PROPERTIES FILE 21
Editing the Properties File . 21
Renaming the Properties File . 22
The Parameters . 22

Version . 23
NAE_IP . 23
Port . 23

TABLE OF CONTENTS 4
Protocol . 23
Use_Persistent_Connection . 23
Size_of_Connection_Pool . 24
Connection_Timeout . 24
Connection_Idle_Timeout . 24
Connection_Retry_Interval . 25
Cluster_Synchronization_Delay . 25
EdgeSecure_Name . 25
Cipherspec . 26
CA_File . 26
Cert_File . 26
Key_File . 27
Passphrase . 27
Symmetric_Key_Cache_Enabled . 27
Symmetric_Key_Cache_Expiry . 28
Persistent_Cache_Enabled . 28
Persistent_Cache_Directory . 28
Persistent_Cache_Expiry_Keys . 29
Persistent_Cache_Max_Size . 29
Log_Level . 29
Log_File . 29
Log_Rotation . 30
Log_Size_Limit . 30

Reading System Properties From the Windows Registry . 30
Setting Properties in the Registry via the Sample Configuration 31
Manually Setting Properties in the Registry . 32

CHAPTER 4 CONNECTING TO A SERVER . 33
Overview . 33
How it Works . 33
Related IngrianNAE.properties Parameters . 34

CHAPTER 5 CONNECTION POOLING . 36
Connection Pools . 36
How it Works . 36
Related IngrianNAE.properties Parameters . 37
Examples . 38
SAFENET PROTECTAPP FOR .NET USER GUIDE

TABLE OF CONTENTS 5
CHAPTER 6 LOAD BALANCING GROUPS. 39
Overview . 39
How it Works . 40
Related IngrianNAE.properties Parameters . 41
Examples . 42

CHAPTER 7 MULTI-TIER LOAD BALANCING . 43
Overview . 43
How it Works . 44
Related IngrianNAE.properties Parameters . 45
Examples . 47

CHAPTER 8 SETTING UP SSL . 48
SSL Overview . 48
SSL Configuration Procedures . 49

Creating a Local CA . 50
Creating a Server Certificate Request on the Management Console 50
Signing a Server Certificate Request with a Local CA 50
Importing a Server Certificate to the DataSecure Appliance 51
Downloading the Local CA Certificate . 52

SSL Walkthrough for SafeNet Clients . 52
SSL with Client Certificate Authentication Overview . 56
SSL with Client Certificate Authentication Procedures . 57

Generating a Client Certificate Request with req.exe 58
Signing a Certificate Request and Downloading the Certificate 59
Installing a CA Certificate on the Server . 60
Adding a CA to a Trusted CA List Profile . 60

SSL with Client Certificate Authentication Walkthrough for DataSecure Clients . . . 60

CHAPTER 9 CREATING AN NAESESSION . 64
Creating a Global Session to a DataSecure . 64
Creating an Authenticated Session to a DataSecure . 64

CHAPTER 10 WORKING WITH KEYS . 65
Listing All Keys Available on the DataSecure . 65
Obtaining an Instance of a Key . 65
Obtaining an Instance of a Key - Alternate Method . 66
Deleting a Key Using the Key Name . 66
Creating a Key . 66
SAFENET PROTECTAPP FOR .NET USER GUIDE

TABLE OF CONTENTS 6
Importing a Symmetric Key . 67
Importing an Asymmetric Key . 68
Setting the Key Mode and Padding . 68

CHAPTER 11 USING VERSIONED KEYS. 69
Overview . 69
Creating a Versioned Key . 70
Creating a New Version . 70
Activate, Restrict, or Retire a Version . 70
Using a Versioned Key to Encrypt, Sign, and MAC . 70
Using a Versioned Key to Decrypt, SignV, and MACV . 71

CHAPTER 12 SYMMETRIC KEY CACHING . 72
Overview . 72

Supported Functions . 73
How it Works . 73
Related IngrianNAE.properties Parameters . 73
Logging . 74

CHAPTER 13 PERSISTENT KEY CACHING . 75
Overview . 75
Supported Functions . 76
How it Works . 76
Related IngrianNAE.properties Parameters . 77
Logging . 78
Tips . 78

Pre-Loading Keys . 78
Troubleshooting . 79

CHAPTER 14 WORKING WITH CERTIFICATES . 80
Importing a Certificate . 80
Exporting a Certificate . 81
Exporting a CA Chain . 82
Deleting a Certificate . 82

CHAPTER 15 ENCRYPTING AND DECRYPTING DATA. 83
Encrypting a String Using an AES Key . 83
Decrypting a String Using an AES Key . 85
Encrypting a String Using an RSA Key . 86
SAFENET PROTECTAPP FOR .NET USER GUIDE

TABLE OF CONTENTS 7
Decrypting a String Using an RSA Key . 86
Encrypting a File . 87
Decrypting a File . 89

CHAPTER 16 GENERATING A MAC . 91
Creating a MAC . 91

CHAPTER 17 USING PROTECTAPP FOR .NET API 92
Enabling Users to Perform Administrative Operations . 92
Overview . 92
Thread Safety . 93
Exceptions . 93
Supported Functions . 93

Supporting Calls . 93
Connection Calls . 94
Key-related APIs . 96
MAC/Hash-related APIs . 103

INDEX . 106
SAFENET PROTECTAPP FOR .NET USER GUIDE

About This Guide
This introductory chapter gives a brief summary of the book’s contents, identifies the audience,
explains how to best use the written material, discusses the documentation conventions used, and
provides instructions for contacting technical support.

This chapter contains the following sections:

Using This Guide 8

Documentation Conventions 9

Using This Guide
Generally speaking, our user guides are written for network administrators, security engineers,
database administrators, application developers, and other technology professionals responsible
for daily operations in support of data security. The written material we provide describes how to
configure and operate our products and assumes a working knowledge of networking, computer
security, database management, and cryptography.

This specific book is designed for advanced developers familiar with the .NET framework, and the
DataSecure appliance.

ABOUT THIS GUIDE 9
Documentation Conventions
This section describes the formatting conventions used in this manual to explain code samples,
special notes and cautions.

Code Samples
Samples code is illustrated in the format shown below. Much of this guide includes pieces of
sample code that you will not be able to compile by itself.

Notes and Cautions
The following paragraph formats are used to highlight information in the text:

Note: A note conveys information that supplements the preceding text. This information may
refer to certain situations or a specific technical setup.

Important! An important note is a very significant piece of information required for the
completion of a task.

Tip: A tip helps you apply the information in the preceding text.

WARNING! A warning advises you to exercise care when working around specified equipment
conditions. Heeding a warning can prevent personal injury, system disruption, or equipment
damage.

NAESession * session = new NAESession();
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 1

Overview
This document describes how to integrate the ProtectApp for .NET with your back-end application
servers and it gives code samples that illustrate how you might customize the ProtectApp for .NET
as your application requires. This chapter provides a description of the high-level architecture of
the DataSecure Platform, lists the hardware and software requirements, and discusses the
supported cryptographic operations.

This chapter contains the following sections:

General System Architecture 10

Hardware and Software Requirements 11

Supported Cryptographic Operations 12

Supported Content 12

General System Architecture
The DataSecure Platform consists of two required components – the client (the ProtectApp for
.NET in this case) and the DataSecure – and, in some cases, an optional Database Connector.

The diagram below shows a high-level network diagram of a typical deployment of the DataSecure
Platform. Whenever necessary, the DataSecure client (application, web, database servers) makes
requests via one of the ProtectApp Clients or the XML interface for cryptographic operations to be
performed by the DataSecure Appliance. The DataSecure Appliance performs all desired
cryptographic operations and returns data to the application that made the request. At that point, if
the client is an application, it might want to store the data in a database, or it might want to return
the data to a client over the internet. This unique method of providing cryptographic functionality
over the network creates an extremely simple, scalable, and secure solution to backend data
encryption, integrity checking and fingerprinting (hashing). An example configuration is illustrated
below.

OVERVIEW 11

The ProtectApp for .NET is installed on all the back-end servers that might be making requests for
cryptographic operations. All applications, servlets, or scripts see a conventional .NET interface
and issue simple commands to the DataSecure to perform cryptographic operations. Instead of
bogging down back-end server applications with cryptographic operations, the DataSecure
performs all such operations.

Hardware and Software Requirements
The hardware and software required to deploy the DataSecure Platform are listed below.

Required Equipment
• DataSecure appliance: This is available in various hardware configurations and comes

standard with two 10/100 Ethernet interfaces for connecting to the back-end servers. Options
are available for redundant power supplies, redundant fans, and copper and fiber Gigabit
Ethernet versions.

• ProtectApp for .NET: This is provided in the form of a DLL file.

Other Requirements
• Windows platforms with .NET Framework Version 2.0 or above
SAFENET PROTECTAPP FOR .NET USER GUIDE

OVERVIEW 12
Supported Cryptographic Operations
The ProtectApp for .NET exposes functionality to allow the user to implement data privacy,
confidentiality and integrity in a simple, scalable and secure manner. The operations supported are
listed below.

Supported Content
There are no restrictions on the type of data and content that the DataSecure can secure. Whether
it is a 10 byte string of data, a 10K image, a 1 MB text file, a 10MB PDF file, a financial
spreadsheet, or a line of code, the NAE Server can perform all desired cryptographic operations.
In short, the DataSecure Platform can handle any type of data or content.

Security Provided Algorithm Functions Supported

Data Privacy and Confidentiality
(Symmetric)

AES, DESede, DES • Encrypt / Decrypt

Data Privacy and Confidentiality
(Asymmetric)

RSA • Encrypt / Decrypt

Data Integrity HmacSHA1, HmacSHA2 • MAC / MAC Verify
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 2

Installing ProtectApp for .NET
This chapter describes how to obtain, install, upgrade, and uninstall ProtectApp for .NET.

This chapter contains the following sections:

Obtaining ProtectApp for .NET Software 13

Installing ProtectApp for .NET 14

Upgrading ProtectApp for .NET 17

Repairing ProtectApp for .NET 18

Uninstalling ProtectApp for .NET 18

The Sample Application 19

Obtaining ProtectApp for .NET Software
You can obtain the appropriate installation program by logging into the Customer Support web site.
All installation programs adhere to the following naming convention:

partnumber_software_platform_version.format

The following table explains the naming convention.

For example,

611-009849-001_datasecure_protectapp_dotnet_32bit_windows_v5.1.1.000-
010.exe

Value Description

partnumber The part number or the unique identifier of the software.

software The software name.

platform The name of the platform, such as Microsoft Windows 32 bit.

version The version number of the software.

build The specific build in the release for which the installer was created.

format The format in which the installation program is delivered; usually, an executable (EXE) file.

INSTALLING PROTECTAPP FOR .NET 14
Installing ProtectApp for .NET
Important! Before installing ProtectApp for .NET, you must have the .NET Framework Version
2.0 or above installed. The installer will detect if you do not have the framework and will prompt
you to install it.

To install ProtectApp for .NET, follow the steps below.

1 Double-click setup.exe. This launches an InstallShield Wizard that walks you through the
installation process. Click Next.

2 Provide a destination for the program files and click Next.
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 15

The directory you specify will contain all of the files described in “The Installed Directory” on
page 17.

3 Click Install to begin the installation.

4 The installer will display the progress of the installation.
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 16

5 Once the necessary files are installed, click the Finish button to exit the InstallShield Wizard.

The NAE_Properties_Config Registry Key
The installation program creates a registry key called ConfigFilename with the following value:

• ConfigFilename - specifies the location of the IngrianNAE.properties file. There is no default
value for this string; rather, the value of the string is set when you specify where to install
ProtectApp for .NET. You should note that this string specifies a path and a file name.
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 17
The NAE_Properties_Config key is located in My Computer \ HKEY_LOCAL_MACHINE \
SOFTWARE \ Ingrian.

The Installed Directory
The installation program creates the following directory structure, which includes a sample
application written in Visual Basic, Visual C++, and Visual C#.

The examples folder contains sample code and applications written in Visual Basic, Visual C++,
and Visual C#. The sample application is detailed in “The Sample Application” on page 19.

The ingdnp.dll file is the dynamic-link library that contains the ProtectApp for .NET API.

The IngrianNAE.properties file contains the system
properties. For more information, see
“IngrianNAE.properties File Overview”.

The files req and openssl.conf are used to generate
certificate requests. The req file needs to be in the same
directory as openssl.conf to run. Likewise, you must
call req from within the directory where it resides. You
might need to generate client certificates for your client
applications if you are requiring client certificate
authentication. This topic is discussed further in “SSL with
Client Certificate Authentication Overview” on page 56.

The file SampleRegistryConfig.reg is a sample registry file. For more information on the
sample registry file, see “Reading System Properties From the Windows Registry” on page 30.

Upgrading ProtectApp for .NET
Important! Before upgrading ProtectApp for .NET, close all associated applications. Examples
of such applications include Windows Explorer, Command Prompt, and Visual Studio etc.

To upgrade ProtectApp for .NET, follow the installation procedure described in “Installing
ProtectApp for .NET” on page 14. The installation will detect if you are upgrading and alter the
process accordingly.

The upgrade process overwrites all of your existing files except the properties file and the
examples folder.

\SafeNet ProtectApp
\DotNet

\examples
\VB
\VC
\VC#

ingdnp.dll
IngrianNAE.properties

openssl.conf
req.exe
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 18
Properties File
The process creates a backup copy of your existing configuration file (for example, 5.0.0
IngrianNAE.properties) in the backup folder. It does not add any new parameters to the existing
5.0.0 IngrianNAE.properties file.

A new properties file, prefixed with the software version (for example,
5.1.1.000.013.IngrianNAE.properties) is created for the new version. Now, you can use the 5.0.0
IngrianNAE.properties file to copy the existing configuration to the new properties file. In case you
accidently make any changes to the 5.0.0 IngrianNAE.properties file, you can revert the changes
by referring to the properties file stored at the backup folder.

You must manually add any new parameters to the new properties file to use new features.

This guide provides a complete list of parameters in Chapter 3, “Configuring the Properties File”.
Compare that list with your properties file, and insert the new parameters in the order shown.

Examples Folder
A new folder named <VERSION>.examples is created, where <VERSION> is the version number
of the new installation. For example, if the new version number is 5.1.1.000.013, a new examples
folder, 5.1.1.000.013.examples, gets created. The examples folder of previous installation
remains intact.

Repairing ProtectApp for .NET
The procedure to repair ProtectApp for .NET installation is same as “Upgrading ProtectApp for
.NET” on page 17.

Uninstalling ProtectApp for .NET
To uninstall ProtectApp for .NET:

1 In your Microsoft Windows Operating System, navigate to Start > Settings > Control Panel >
Add or Remove Programs.

2 Select the SafeNet ProtectApp for .NET32 bit / SafeNet ProtectApp for .NET 64 bit and click
Remove.
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 19
The Sample Application
The ProtectApp for .NET is distributed with source code written in Visual Basic, Visual C++, and
Visual C#. Once compiled, this source code can be run to test your installation.

Important! Compile this code using MS Visual Studio 2005, Visual Studio 2008, and Visual
Studio 2010. The compilation of this code is not supported on Visual Studio 2003.

The sample application prompts you for a valid user name and password, and uses that
information to log in to the DataSecure specified in the IngrianNAE.properties file. The
program then searches for a key named ingrian_example_key. If one doesn’t exist, it creates
a deletable 128-bit AES key. (On Non-FIPS servers, this key is exportable.)

You can enter up to 127 bytes of clear text. The program will display the encrypted and decrypted
values, and then exit.

Compiling the Sample Application with Visual Studio 2010
To compile the sample application with Microsoft Visual Studio 2010, you first need to convert the
sample application project files into the Visual Studio 2010 project files.

Converting Sample Application Project Files into Visual Studio 2010 Project Files

You can convert the supplied project files into Microsoft Visual Studio 2010 project files by using
Visual Studio 2010 Translator.

While converting the Visual C++ project, the x64 tools should be installed with Visual Studio 2010.
If the x64 tools are not installed, remove the configuration for x64 tools from the project file.

Using Sample Applications with .NET Framework 4.0

The supplied sample application can be targeted for the .Net Framework 4.0 by including the
app.config file in the corresponding project.

Content of a sample app.config file is given below:

<?xml version="1.0"?>

<configuration>

<startup useLegacyV2RuntimeActivationPolicy="true">

<supportedRuntime version="v4.0" sku=".NETFramework,Version=
v4.0"/>

</startup>

</configuration>
SAFENET PROTECTAPP FOR .NET USER GUIDE

INSTALLING PROTECTAPP FOR .NET 20
For Visual C++, the app.config file needs to be copied manually to the Debug or Release folder.
The app.config should be named as <exename>.exe.config, where <exename> is the name of the
executable file.

Before You Begin
Before you can run the sample application, you must create a user on a DataSecure (if you have
not done so already) and modify the properties file so that the configuration values for IP address,
port and protocol correspond to the configuration of your DataSecure. Follow the steps below to
modify the properties file:

1 Navigate to the directory into which you installed ProtectApp for .NET. The default location is:

2 Open IngrianNAE.properties in a text editor such as Notepad.

3 Modify the following parameters:

- NAE_IP – IP address of the DataSecure that you will be connecting to. We recommend
that you specify only one DataSecure in this initial testing period.

- NAE_Port – Port that the DataSecure is listening on.

- Protocol – Make sure this parameter is set to TCP.

- Log_File – Name for the log file. You should specify a name and a path. If you do not
specify a value for the log file, a file called Logfile will be created in the same directory as
the executable used to test the installation. The user running your client application must
have permission to write to the log file, and to create new files in the directory where the
log file(s) will be created.

Note: The IP address, port, and protocol parameters you specify must correspond to the
values specified on the DataSecure.

4 Save your changes and close IngrianNAE.properties.

Now you can test your installation.

C:\Program Files\SafeNet ProtectApp\
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 3

Configuring the Properties File
This chapter lists the contents of the IngrianNAE.properties file. The properties file defines, among
other things, the IP address, port, and protocol of the DataSecures to which your client connects.

This chapter contains the following sections:

Editing the Properties File 21

Renaming the Properties File 22

The Parameters 22

Reading System Properties From the Windows Registry 30

Editing the Properties File
The values in the properties file are case-sensitive. yes is not YES. tcp is not TCP. Follow the
example of the default properties file.

You can comment-out values using #. You’ll see that the properties file is delivered with both
EdgeSecure_Name and Cipher_Spec commented-out. You may want to use comments to save
settings when troubleshooting. For example, you could store commonly used NAE_IP addresses
like this:

When editing parameters that use time values, you can use the following abbreviations:

• ms - milliseconds. e.g. 4500ms for 4.5 seconds.

• s - seconds. e.g. 30s for 30 seconds.

• m- minutes. e.g. 5m for 5 minutes.

• h - hours. e.g. 10h for 10 hours.

• d - days. e.g. 2d for 2 days.

If you do not include an abbreviation, the default time unit is used. For most time-related values the
default is milliseconds. For Symmetric_Key_Cache_Expiry and
Persistent_Cache_Expiry_Keys, the default is seconds.

NAE_IP=10.0.0.2
#NAE_IP=10.0.0.3
#NAE_IP=10.0.0.4

CONFIGURING THE PROPERTIES FILE 22
Renaming the Properties File
Although the file is named IngrianNAE.properties, you can rename the file to any valid
name. If you do rename the file, you must update your system to reflect the new name. There is a
registry key called Ingrian under \HKEY_LOCAL_MACHINE\SOFTWARE\. If you change the
name or location of the properties file, make sure that the value in the NAE_Properties_Config
registry key reflects the path to the properties file, including the file name.

The Parameters
Once you install the SafeNet client software, you can customize it to meet the needs of your
environment by modifying the properties file. The parameters listed in the file, including the
delivered settings, are shown below.

Version=2.5
NAE_IP=
NAE_Port=9000
Protocol=tcp

Use_Persistent_Connections=yes
Size_of_Connection_Pool=300
Connection_Timeout=30000
Connection_Idle_Timeout=600000
Connection_Retry_Interval=600000
Cluster_Synchronization_Delay=100
#EdgeSecure_Name=

#Cipher_Spec=HIGH:!ADH:!DH:!DSA:!EXPORT:RSA+RC4:RSA+DES:RSA+AES
CA_File=
Cert_File=
Key_File=
Passphrase=

Symmetric_Key_Cache_Enabled=no
Symmetric_Key_Cache_Expiry=43200

Persistent_Cache_Enabled=no
Persistent_Cache_Directory=
Persistent_Cache_Expiry_Keys=43200
Persistent_Cache_Max_Size=100

Log_Level=MEDIUM
Log_File=
Log_Rotation=Daily
Log_Size_Limit=100k
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 23
Version
The Version parameter indicates the version of the properties file and should not be modified.

NAE_IP
The NAE_IP parameter specifies the IP address of the DataSecure.

Port
The NAE_Port specifies the port of the DataSecure. The default port is 9000.

Important! Clients and servers must use the same port.

Protocol
The Protocol specifies the protocol used to communicate between the client and the DataSecure.

Possible settings:

• tcp

• ssl - The ssl option uses TLSv1. By default, TLSv1 is enabled on all DataSecures. If you have
disabled the use of TLSv1 on your servers, then you cannot establish SSL connections with
between your NAE clients and servers.

Important! Clients and servers must use the same protocol. If your DataSecures are listening
for SSL requests, and your clients aren’t sending SSL requests, you will run into problems.

Tip: We recommend that you gradually increase security after confirming connectivity between
the client and the DataSecure. Once you have established a TCP connection between the client
and server, it is safe to move on to SSL. Initially configuring a client under the most stringent
security constraints can complicate troubleshooting.

Use_Persistent_Connection
The Use_Persistent_Connections parameter enables the persistent connections functionality.

Possible settings:

• yes - Enables the feature. The client establishes persistent connections with the NAE
Servers. This is the default value.

• no - Disables the feature. A new connection is made for each connection request. The
connection is closed as soon as the client receives the server response.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 24
Size_of_Connection_Pool
The Size_of_Connection_Pool parameter is the total number of client-server connections that
your configuration could possibly allow. (Not what actually exists at a given moment.)

Possible settings:

• Any positive integer - The default is 300.

Connections in the pool can be active or waiting, TCP or SSL. A connection is created as needed,
and the pool scales as needed. The pool starts at size 0, and can grow to the value set here. Once
the pool is full, new connection requests must wait for an existing connection to close.

Connection pooling is configured on a per-client basis. The size of the pool applies to each client,
it is not a total value for a DataSecure or for a load balancing group. If there are multiple clients
running on the same machine, separate connection pools are maintained for each client.

Connection_Timeout
The Connection_Timeout parameter specifies how long the client waits for the TCP connect
function before timing out.

Possible settings:

• 0 - disables this setting. The client uses the operating system’s connect timeout.

• Any positive integer - The default is 30000ms.

Setting this parameter a few hundred ms less than the operating system’s connection timeout
makes connection attempts to a downed server fail faster, and failover happens sooner. If a
connection cannot be made before the timeout expires, the server is marked as down and taken
out of the rotation.

Note: If your client is working with many versions of a key, do not set the Connection_Timeout
parameter too low. Otherwise the client connection may close before the operation is complete.

Connection_Idle_Timeout
The Connection_Idle_Timeout parameter specifies the amount of time connections in the
connection pool can remain idle before the client closes them.

Possible settings:

• Any positive integer - The default is 600000ms (10 min).

Important! There are two different connection timeout values: one on the DataSecure, and one in
the properties file. The value of the timeout in the properties file must be less than what is set on
the server. This lets the client control when idle connections are closed. Otherwise, the client can
maintain a connection that is closed on the server side, which can lead to error.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 25
Connection_Retry_Interval
The Connection_Retry_Interval parameter determines how long the client waits before trying to
reconnect to a disabled server. If one of the DataSecures in a load balanced configuration is not
reachable, the client assumes that the server is down, and then waits for the specified time period
before trying to connect to it again.

Possible settings:

• 0 - This is the infinite retry interval. The disabled server will never be brought back into use.

• Any positive integer - The default value is 600000ms (10 minutes).

Cluster_Synchronization_Delay
The Cluster_Synchronization_Delay parameter specifies how long the client will wait before
assuming that key changes have been synchronized throughout a cluster. After creating, cloning,
importing, or modifying a key, the client will continue to use the same DataSecure appliance until
the end of this delay period.

Possible settings:

• 0 - disables the function.

• Any positive integer. The default is 100s. You may want a higher setting for large clusters.

For example, the client sets Cluster_Synchronization_Delay to 100s and sends a key creation
request to appliance A, which is part of a cluster. Appliance A creates the key and automatically
synchronizes with rest of the cluster. The client will use only appliance A for 100 seconds - enough
time for the cluster synchronization to complete. After this time period, the client will use other
cluster members as before.

EdgeSecure_Name
The client uses the EdgeSecure_Name parameter to communicate with an EdgeSecure.

Possible settings:

• Name of an EdgeSecure

• Filename - the first line of the file must contain the EdgeSecure name. Using a file enables
you to use the same IngrianNAE.properties file for all of your clients and still maintain unique
EdgeSecure names for each.

This parameter is tier-aware to allow for failover. Three tiers are allowed: EdgeSecure_Name.1,
EdgeSecure_Name.2, and EdgeSecure_Name.3. The third tier must be a DataSecure.

Note: This failover feature is not associated with the Multi-Tier Load Balancing feature.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 26
Cipherspec
The Cipher_Spec parameter specifies which SSL/TLS protocol and encryption algorithms to use.
Multiple cipher strings can be separated by colons.

For example, the value

specifies the following:

• do NOT use anonymous Diffie-Helman (!ADH), Diffie-Helman (!DH), nor DSA (!DSA)

• use high strength ciphers, RSA+RC4, RSA+DES, and RSA+AES

Note: The default entry is commented out in the properties file; this is because this parameter is
compiled into the client library. You should only modify this parameter if you prefer to use
some other combination of algorithms and protocols. Modifying this parameter overrides the
value in the library.

Important! If you specify some value other than the default, you must use RSA for key
exchange.

CA_File
The CA_File parameter refers to the CA certificate that was used to sign the server certificate
presented by the NAE Server to the client.

Possible settings:

• The path and filename - The path can be absolute or relative to your application. Don’t use
quotes, even if the path contains spaces.

Because all DataSecures in a clustered environment must have an identical configuration, all
servers in the cluster use the same server certificate. As such, you only need to point to one CA
certificate in the CA_File system parameter. If you do not supply the CA certificate that was used
to sign the server certificate used by the DataSecures, your client applications cannot establish
SSL connections with any of the servers in the cluster.

If a local CA on the DataSecure was used to sign the NAE Server certificate, you can download
the certificate for the local CA, and put that certificate on the client.

Cert_File
The Cert_File parameter stores the path and filename of the client certificate. This is only used
when your SSL configuration requires clients to provide a client certificate to authenticate to the
DataSecures.

HIGH:!ADH:!DH:!DSA:!EXPORT:RSA+RC4:RSA+DES:RSA+AES
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 27
Possible settings:

• The path and filename - The path can be absolute or relative to your application. Don’t use
quotes, even if the path contains spaces. Client certificates must be PEM encoded.

Important! If this value is set, the certificate and private key must be present, even if the
DataSecure is not configured to request a client certificate.

Key_File
The Key_File parameter refers to the private key associated with the client certificate specified in
the Cert_File parameter.

Possible settings:

• The path and filename - The path can be absolute or relative to your application. Don’t use
quotes, even if the path contains spaces. The client private key must be in PEM-encoded
PKCS#12 format.

Because this key is encrypted, you must use the Passphrase parameter so the DataSecure can
decrypt it.

Important! If this value is set, the certificate and private key must be present, even if the
DataSecure is not configured to request a client certificate.

Passphrase
The Passphrase parameter refers to the passphrase associated with the private key.

Possible settings:

• The passphrase associated with the private key named in Key_File

If you do NOT provide this passphrase, the client attempts to read the passphrase from standard
input; this causes the application to hang.

Important! Remember that the properties file is NOT encrypted. Make sure that this file resides
in a secure directory and has appropriate permissions so that it is readable only by the appropriate
application or user.

Symmetric_Key_Cache_Enabled
The Symmetric_Key_Cache_Enabled parameter determines if the symmetric key caching
feature is enabled. Only symmetric keys can be cached.

Possible settings:
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 28
• no - Key caching is disabled. Remote encryption (encryption performed on the DataSecure)
is available as normal.

• yes - Key caching is enabled. Protocol must be set to ssl. (And ssl must be configured.)

• tcp_ok - Key caching is enabled over both tcp and ssl connections.

Symmetric_Key_Cache_Expiry
The Symmetric_Key_Cache_Expiry parameter determines the minimum amount of time that a
key will remain in the client key cache.

Possible settings:

• 0 - This is the infinite timeout setting. Keys are never purged from the client cache.

• A positive integer - At the end of this interval, the key will be purged from the cache the next
time the library is called. The default value is 43200 seconds (12 hours).

Persistent_Cache_Enabled
The Persistent_Cache_Enabled parameter determines if the persistent key caching feature is
enabled.

Possible settings:

• yes - The feature is enabled. To enable this feature, you must also enable symmetric key
caching: Symmetric_Key_Cache_Enabled must be set to yes or tcp_ok.

• no - The feature is disabled. This is the default setting.

Persistent_Cache_Directory
The Persistent_Cache_Directory parameter determines where ProtectApp for .NET will create
the persistent cache file.

Possible settings:

• The path to the directory that will contain the keys - The directory must already exist. The
path can be absolute or relative to your application. Don’t use quotes, even if the path
contains spaces.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 29
Persistent_Cache_Expiry_Keys
The Persistent_Cache_Expiry_Keys parameter determines the number of seconds after which a
key may be removed from the cache. To enable the persistent cache, this value must be greater
than zero.

Possible settings:

• 0 - This is the infinite timeout setting. Keys are never purged from the cache.

• Any positive integer - At the end of this interval, the key will be purged from the cache the
next time the library is called. The default value is 43200 seconds (12 hours).

Persistent_Cache_Max_Size
The Persistent_Cache_Max_Size parameter determines the maximum number of keys that can
be stored in the persistent cache.

Possible settings:

• 0 - disables the feature.

• Any positive integer - The default value is 100 keys.

Log_Level
The Log_Level parameter determines the level of logging performed by the client.

Possible settings:

• NONE – disables client logging. We recommend that you not disable logging.

• LOW – only error messages are logged.

• MEDIUM – the client logs error messages and warnings.

• HIGH – the client logs error messages, warnings and informational messages. This level
generates a very large number of entries and is usually reserved for debugging.

Important! The user running your client application must have permission to write to the log file,
and to create new files in the directory where the log files are created.

Log_File
The Log_File parameter specifies a name (and possibly a path) for the log file.

Possible settings:
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 30
• a filename - The log will be created in the same directory as the client. The default value is
Logfile.txt.

• a path and filename - The path can be absolute or relative to your application. Don’t use
quotes, even if the path contains spaces.

Use the INGRAN_LOGFILE_SUFFIX environment variable to create individual log files for each
client application. When the variable is set, its value is appended to the value set in the Log_File
parameter. When a unique value is set for each client application, each client gets its own logfile.

For example, if your Log_File parameter is set to /foo/Logfile and your application’s
INGRIAN_LOGFILE_SUFFIX is set to app1, then that log file will be written to /foo/Logfile.app1.
Then, if you set INGRIAN_LOGFILE_SUFFIX to app2 in a second application, that log file will
appear in /foo/bar/Logfile.app2.

Similarly, the INGRIAN_LOGFILE_PREFIX environment variable enables you to prepend the
value set in the Log_File parameter. To create a log file in /tmp/application1/Logfile.txt, you would
set INGRIAN_LOGFILE_PREFIX to /tmp/application1/ and accept the Log_File default.

Log_Rotation
The Log_Rotation parameter specifies whether logs are rotated daily or once they reach a certain
size.

Possible settings:

• Daily - Rotates logs daily. This is the default.

• Size - Rotates logs when the reach the size specified in Log_Size_Limit.

Log_Size_Limit
The Log_Size_Limit parameter specifies how large log files can be before they are rotated. This
parameter is used only when Log_Rotation is set to Size.

Possible settings:

• Any positive integer - The default unit is bytes. You can use the suffix k (or K) for kilobytes
and m (or M) for megabytes. The default value is 100k.

Reading System Properties From the Windows Registry
By default, the client reads the system properties from the properties file; however, you can
configure ProtectApp for .NET to read the system properties from the system registry instead. This
option is only available in Microsoft Windows environments.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 31
When ProtectApp for .NET is launched, it searches the registry for the ConfigFilename key, which
contains the location of the properties file. If the file is found, ProtectApp for .NET stores the data
and uses it while the client application is running. If the properties file is not found, ProtectApp for
.NET searches the registry for the individual parameters. (If no keys are found, the client
application cannot run.)

For ProtectApp for .NET to read values from the registry rather than the properties file, you must
rename the IngrianNAE.properties file (to hide it) and you must create the appropriate registry
keys.

As part of ProtectApp for .NET, we distribute a sample registry configuration. You can use this
sample, or you can manually create string values for the system values you want to set. Be aware
that using the sample registry file overwrites any existing values in the registry.

Important! You do not have to create a string value for each property in the properties file;
however, you must set the Version parameter correctly. If you are not sure what value to provide,
check the properties file that shipped with ProtectApp for .NET.

Setting Properties in the Registry via the Sample Configuration
1 Navigate to the directory into which you installed ProtectApp for .NET. The default directory is

C:\Program Files\SafeNet ProtectApp.

2 Open the SampleRegistryConfig.reg file in a text editor.

The sample configuration file includes only a subset of the available system properties. The
following system properties are set with the values listed below:

3 Modify the parameters in the file according to the needs of your deployment. Add appropriate
system properties if necessary.

4 Save your changes and close the file.

5 Double-click on SampleRegistryConfig.reg to create the necessary registry keys.

"Version"="2.0"
"NAE_IP"="192.168.200.223"
"NAE_Port"="9000"
"Protocol"="tcp"
"Use_Persistent_Connections"="yes"
"Size_of_Connection_Pool"="300"
"Log_Level"="HIGH"
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONFIGURING THE PROPERTIES FILE 32
Manually Setting Properties in the Registry
To set the system properties in the registry manually, create a new string value for the system
properties relevant to your deployment in the following location:

For the IP address of the DataSecure, for example, you would create a new string value called
NAE_IP and you would assign it a value equal to the DataSecure’s IP address. Remember, if you
are specifying multiple DataSecures in a load balancing group, you only need to create one
registry key. Simply separate IP addresses with a colon.

HKEY_LOCAL_MACHINE\SOFTWARE\Ingrian\
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 4

Connecting to a Server
This chapter contains the following sections:

Overview 33

How it Works 33

Related IngrianNAE.properties Parameters 34

Overview
To connect to an individual server, you’ll need to set the network configuration parameters (which
control where and how messages are sent) and the connection configuration parameters (which
control how long the client will wait for communication from the server).

Tip: For a quick connection test, just enter your DataSecure appliance IP in NAE_IP and keep the
other parameters at their default settings. Run one of our sample applications (explained in
Chapter 12) to confirm that the connection works. You can then change the other parameters as
you configure other features.

How it Works
The following steps describe what happens when the client attempts to connect to the server for
the first time.

1 The client creates a session. This, in turn, creates a new load balancer, which stores the
NAE_IP, Port, and Protocol parameters and the connection timeout and interval values. If
persistent connections are enabled, the load balancer also creates a connection pool.

Note: If persistent connections are not enabled, the load balancer will not create a
connection pool. Connection pools enable the client to reuse existing connections if it needs
them after it receives the server response. We recommend enabling persistent connections,
because the performance cost of maintaining a connection pool is much less than the cost of
opening a new connection for each client request.

CONNECTING TO A SERVER 34
2 The client requests a connection from the load balancer. Since this is the first connection
request, the load balancer creates a connection. (When the client makes future requests, the
load balancer will search the connection pool for existing connections before creating a new
one.)

3 The client will wait the duration of the Connection_Timeout for a server response. If the
server does not respond within the timeout period, or refuses the connection, the connection
fails and the client ignores the server for the duration of the Connection_Retry_Interval. If
the server responds in time, the connection is successful.

4 The client obtains the connection.

5 The client uses the connection to send a cryptographic request to the server.

6 The server sends the response.

7 The client receives the response. The load balancer keeps the connection in the pool, if
persistent connections are enabled. Otherwise, it closes the connection.

8 The client requests another connection. If persistent connections are enabled, the load
balancer searches the connection pool for an existing connection.

Related IngrianNAE.properties Parameters
The connection to an individual server uses the following parameters in the properties file:

Parameter Description

NAE_IP The IP address of the DataSecure device.

Port The port on which the client will communicate with the server. Your client must use the
same port as the server, which is set on the NAE Server Settings section on the
Management Console.

Possible Settings: The server’s port number. The default server port is 9000.

Protocol The protocol used to communicate between the client and the server. Your client must
use the same protocol as the server, which is indicated on the NAE Server Settings
section on the Management Console.

Possible Settings: tcp (default)
ssl (recommended) - To configure ssl you’ll need a server cert and
perhaps a client certificate, depending on your configuration.

The ssl option uses TLSv1 as the protocol here. By default, TLSv1 is enabled on all
servers. If you have disabled the use of TLSv1 on your servers, then you cannot establish
SSL connections between your client and server.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONNECTING TO A SERVER 35
Connection
_Timeout

How long the client will wait for the connection call to return a value. If a connection
cannot be established before the timeout expires, then the server is marked as down and
is taken out of rotation until the Connection_Retry_Interval has passed.

Possible Settings: 30000 ms (default) - The client will wait 30 seconds.

0 - The client will not force a timeout. The waiting period set by the
client’s OS still applies; the client will wait as long as the TCP stack
normally waits for a connection.

Any positive integer.

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time unit
(milliseconds) is used.

If your application is time-sensitive, set this parameter a few hundred milliseconds less
than your OS’s connection timeout. This will make connections to a down server fail more
quickly, in which case failover will occur sooner.

Connection
_Retry_Interval

How long the client waits before trying to reconnect to an unavailable server.

Possible Settings: 0 - Infinite retry interval - The client will never try to reconnect.

Any positive integer. The default is 600000 ms (10 min).

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time unit
(milliseconds) is used.

If the server or network is under a high load, a connection timeout could occur for a
running sever. If your Connection_Retry_Interval is not long enough, another connection
attempt will be made to the busy server - adding to its already high load.

Parameter Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 5

Connection Pooling
This chapter contains the following sections:

Connection Pools 36

How it Works 36

Related IngrianNAE.properties Parameters 37

Examples 38

Connection Pools
Persistent connections are connections that are used for multiple client requests and DataSecure
responses. Once opened, persistent connections are cached in a connection pool. You set the
properties that enable persistent connections, determine the maximum size of the connection
pool, and control how long unused connections are maintained.

If you do not enable persistent connections, connections are closed as soon as the client receives
the server response. We recommend enabling persistent connections. The performance cost of
maintaining a pool is much less than the cost of opening a new connection for each request.

How it Works
The following steps describe what happens when the feature is enabled and the client attempts to
connect to the server:

1 You application calls for a connection to the DataSecure server.

2 The client checks that Use_Persistent_Connections is set to yes.

3 The client searches the connection pool for an existing connection.

4 The client uses an existing connection if one is available. Otherwise, it creates a new one if
there is space in the pool. If there is no space the client returns an error.

5 The client uses the connection to communicate with the server.

6 When the operation is done, the connection stays in the pool and can be reused by the client.
The pool closes connections that have been idle for the length of the
Connection_Idle_Timeout.

CONNECTION POOLING 37
Related IngrianNAE.properties Parameters
To use connection pools, you will have to set the following parameters in the properties file:

Parameter Description

Use_Persistent
_Connections

Enables the persistent connections functionality.

Possible Settings: yes (default) - Enables the feature

no - Disables the feature. A new connection is made for each
connection request. The connection is closed as soon as the client
receives the server response.

Size_of
_Connection
_Pool

The total number of client-server connections that your configuration could possibly allow.
(Not what actually exists at a given moment.) Connections in the pool can be active or
waiting, tcp or ssl. A connection is created as needed and the pool scales as needed. So,
your pool automatically starts at size 0, and can grow to whatever value you set here.
Once the pool is full, additional connection requests must wait for an existing connection
to close.

Connection pooling is configured on a per-client basis. The size of the pool applies to
each client, it is not the total value for an NAE Server or for a load balancing group. If
there are multiple clients running on the same machine, separate connection pools are
maintained for each client.

Possible Settings: Any positive integer. The default is 300.

Regardless of your setting, the pool will always have at least 2 connections per NAE
Server.

The larger your connection pool, the less likely your client will get a failed connection
request.

Connection_
Idle_Timeout

The time after which the client will close idle connections in the pool.

Possible Settings: Any positive integer. The default is 600000 ms (10 min).

Important! The DataSecure also has a connection timeout setting on the NAE Server
page on the Management Console. The NAE Server value should be greater than the
value set on the client. (The server setting is measured in seconds.) This lets the client
control when idle connections are closed. Otherwise, the client can maintain a connection
that is closed on the server side, which can lead to error.

To maintain connections during load surges, use a value high enough to span the gap
between peak loads.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CONNECTION POOLING 38
Examples
EXAMPLE 1 - THE DEFAULTS

As delivered, the IngrianNAE.properties uses the following values:

Use_Persistent_Connections: Every time the client attempts to connect to the server, it will
search the connection pool for an existing connection. A new connection will be created if the
connection pool is empty. An existing connection will be re-used if one is available. If the
connection pool is at full capacity, the connection request will wait until an existing connection
becomes available.

Size_of_Connection_Pool: No more than 300 connections can exist at one time. The size of the
pool actually starts at 0 and can scale to 300 as needed. Unused connections are closed
according to the Connection_Idle_Timeout, and the connection pool shrinks when fewer
connections are needed.

Connection_Idle_Timeout: If a connection is not being used, it will be closed after 10 minutes.

Use_Persistent_Connections=yes
Size_of_Connection_Pool=300
Connection_Idle_Timeout=600000
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 6

Load Balancing Groups
This chapter contains the following sections:

Overview 39

How it Works 40

Related IngrianNAE.properties Parameters 41

Examples 42

Overview
A load balancing group is a group of DataSecure servers that the client can connect to. The load
balancer is a client feature that determines how best to connect to the servers in the load
balancing group. When concurrent requests are made, the load balancer determines which server
to use - the goal is to distribute connections equally among the servers.

You create a load balancing group by listing multiple DataSecure IP addresses (separated by
colons) in the NAE_IP parameter. Like this:

NAE_IP.1=192.168.1.10:192.168.1.11:192.168.1.12

The client will use the same IngrianNAE.properties file for all members of the load balancing
group. If the client uses NAE_Port 9000, all DataSecure devices must use port 9000.

Note: We recommend that all of the devices in a load balancing group also be members of the
same cluster. Clustered servers use the same port and protocol, as well as have the same keys
and users. For more on clustering, see the DataSecure Appliance User Guide.

Important! All members of a load-balancing group must be either FIPS-compliant or non-FIPS.
You cannot mix FIPS-compliant and non-FIPS servers.

LOAD BALANCING GROUPS 40
How it Works
The following steps describe what happens when the client attempts to connect to the load
balancing group for the first time.

1 The client creates a session. This in turn creates a new load balancer, which stores the
NAE_IP, Port, Protocol, Connection_Timeout, and Connection_Retry_Interval
parameters. If persistent connections are enabled, the load balancer also creates a new
connection pool for each server in the load balancing group.

Note: If persistent connections are not enabled, the load balancer will not create a
connection pool. Connection pools enable the client to reuse existing connections if it needs
them after it receives the server response. We recommend enabling persistent connections,
because the performance cost of maintaining a connection pool is much less than the cost of
opening a new connection for each client request.

2 The client requests a connection from the load balancer. Since this is the first connection
request, the load balancer chooses one of the DataSecures at random and creates a
connection. (When the client makes future requests, the load balancer will apply the round-
robin algorithm to decide which DataSecure to use.)

3 The client waits the duration of Connection_Timeout for a server response.

4 Server 1 does not respond within the timeout period. The client ignores server 1 for the
duration of the Connection_Retry_Interval.

5 The client attempts to connect to server 2.

6 The client obtains the connection.

7 The client uses the connection to send a cryptographic request to server 2.

8 Server 2 sends the response.

9 The client receives the response. The load balancer keeps the connection in the connection
pool, if persistent connections are enabled. Otherwise, the connection is closed.

10 The client requests another connection. The load balancer uses the round-robin algorithm to
determine which DataSecure to use. If persistent connections are enabled, the load balancer
searches that DataSecure’s connection pool for an existing connection.
SAFENET PROTECTAPP FOR .NET USER GUIDE

LOAD BALANCING GROUPS 41
Related IngrianNAE.properties Parameters
To connect to a load balancing group, you will have to set the following parameters in the
properties file:

Parameter Description

NAE_IP.1 The NAE_IP.1 parameter holds the IP address of the DataSecure. To create a load
balancing group, store multiple IPs here. (Separate them with a colon.) For example,

NAE_IP.1=192.168.1.10:192.168.1.11:192.168.1.12

Port The port on which the client will communicate with the DataSecure. Your client must use
the same port as the DataSecure, which is set on the NAE Server Settings section on the
Management Console. All servers in a load balancing group must use the same port.

Possible Settings: The server’s port number. The default server port is 9000.

Protocol The protocol specified here is the protocol used to communicate between the client and
the DataSecure. Your client must use the same protocol as the DataSecure.

Clients and servers must use the same protocol. All servers in a load balancing group
must use the same protocol.

Possible Settings: tcp (default)
ssl (recommended) - To configure ssl you’ll need a server cert, and
perhaps a client certificate, depending on your configuration.

Connection
_Timeout

How long the client will wait for the TCP connection function to return a value. If a
connection cannot be established before the timeout expires, then the server is marked
as down and is taken out of rotation until the Connection_Retry_Interval has passed.

Possible Settings: 30000 (default) - The client will wait 30 seconds.

0 - The client will not force a timeout. The waiting period set by the
client’s OS still applies; the client will wait as long as the TCP stack
normally waits for a connection.

Some value less than your OS’s connection timeout.

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time unit
(milliseconds) is used.

If your application is time-sensitive, set this parameter a few hundred milliseconds less
than your OS’s connection timeout parameter. This will make connections to a down
server fail more quickly, in which case failover will occur sooner.
SAFENET PROTECTAPP FOR .NET USER GUIDE

LOAD BALANCING GROUPS 42
Examples
EXAMPLE 1 - THE DEFAULTS

As delivered, the IngrianNAE.properties uses the following values:

For this example, let’s set NAE_IP.1=alpha:beta:gamma and we’ll take the Connection
Configuration Parameters one by one:

Connection_Timeout: The client will get an error if it takes longer than 30seconds to get a
response from a server.

Connection_Retry_Interval: If the client can’t reach a server before the Connection_Timeout,
the client will take that server out of the round-robin rotation for 10 minutes (600000 milliseconds).

EXAMPLE 2 - SETTING CONNECTION_TIMEOUT

We’ll still use NAE_IP.1=alpha:beta:gamma, but this time we’ll set Connection_Timeout.

Connection_Retry_Interval is unchanged.

Connection_Timeout: The client gets an error if it takes more than 2 seconds to get a response
from a server. In the event that the server (or your network) is under a heavy load, you could get a
timeout even for a running server. In this case, if you set Connection_Retry_Interval too low,
you’ll just end up bombarding an already overloaded server.

Connection
_Retry_Interval

How long the client waits before trying to reconnect to an unavailable server.

Possible Settings: 0 - Infinite retry interval - The client will never try to reconnect.

Any positive integer. The default is 600000 ms (10 min).

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time unit
(milliseconds) is used.

If the server or network is under a high load, a connection timeout could occur for a
running sever. If your Connection_Retry_Interval is not long enough, another
connection attempt will be made to the busy server - adding to its already high load.

Connection_Timeout=30000
Connection_Retry_Interval=600000

Connection_Timeout=2000
Connection_Retry_Interval=600000

Parameter Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 7

Multi-Tier Load Balancing
This chapter contains the following sections:

Overview 43

How it Works 44

Related IngrianNAE.properties Parameters 45

Examples 47

Overview
The multi-tier load balancing feature enables you to create multiple levels of load balancing
groups, called tiers. When one tier is unreachable, the system fails over to the next tier. You can
have a maximum of three tiers. You must configure the tiers in order - e.g. you can’t have tier 3
without having tiers 1 and 2.

The following parameters are tier-aware, meaning that their values can vary by tier:

• CA_File

• Cert_File

• Connection_Idle_Timeout

• Connection_Retry_Interval

• Connection_Timeout

• Key_File

• NAE_Port

• Passphrase

• Protocol

• Size_of_Connection_Pool

To vary the values by tier, add the suffix .n to the parameter name, where n is the tier number. You
can opt to apply one value to all tiers by omitting the .n suffix.

MULTI-TIER LOAD BALANCING 44
For example, to set up the port for tiers 1 and 2 and 3 you could set the following:

You could also do this:

Because tiers 1 and 2 do not have their own settings, they would use the Port value. Tier 3 would
use the Port.3 value.

You could not set the following:

As there would be no setting for tier 1.

How it Works
The following steps describe what happens when the client attempts to connect to the multi-tier
load balancing group for the first time.

1 The client creates a session. This in turn creates a new load balancer, which stores the
NAE_IP, Port, Protocol, Connection_Timeout, and Connection_Retry_Interval
parameters. If persistent connections are enabled, the load balancer also creates a new
connection pool for each server in the load balancing group.

Note: If persistent connections are not enabled, the load balancer will not create a
connection pool. Connection pools enable the client to reuse existing connections if it needs
them after it receives the server response. We recommend enabling persistent connections,
because the performance cost of maintaining a connection pool is much less than the cost of
opening a new connection for each client request.

2 The client requests a connection from the load balancer. Since this is the first connection
request, the load balancer chooses one of the DataSecures on tier 1 at random and creates a
connection. (When the client makes future requests, the load balancer will apply the round-
robin algorithm to decide which DataSecure to use.) The load balancer chooses server 1 on
tier 1.

3 The client waits the duration of Connection_Timeout for server 1’s response.

4 Server 1 does not respond within the timeout period. The client ignores server 1 for the
duration of the Connection_Retry_Interval.

Port.1=9000
Port.2=9000
Port.3=7000

Port=9000
Port.3=8000

Port.2=9000
Port.3=7000
SAFENET PROTECTAPP FOR .NET USER GUIDE

MULTI-TIER LOAD BALANCING 45
5 The client attempts to connect to server 2 on tier 1.

6 The client waits the duration of Connection_Timeout for server 2’s response.

7 The client can’t connect to any server on tier 1.

8 The client attempts to connect to a server on tier 2. The load balancer chooses one of the
DataSecures on tier 2 at random and tries to create a connection. When the client makes
future requests, the load balancer will apply the round-robin algorithm to decide which
DataSecure to use. (The client will continue to use tier 2 until tier 1 is available.) The client will
cycle through all of the DataSecures on all tiers.

9 The client obtains the connection from server 3 on tier 2.

10 The client uses the connection to send a cryptographic request to server 3.

11 Server 3 sends the response.

12 The client receives the response. The load balancer keeps the connection in the pool, if
persistent connections are enabled. Otherwise, the connection is closed.

13 The client requests another connection. The load balancer uses the round-robin algorithm to
determine which DataSecure to use. If persistent connections are enabled, the load balancer
searches that DataSecure’s connection pool for an existing connection.

Related IngrianNAE.properties Parameters
To connect to a multi-tier load balancing group, you will have to set the following parameters in the
properties file:

Parameter Description

NAE_IP.1 The NAE_IP.1 parameter holds the IP address of the DataSecure. To create multiple tiers
or servers, increment the suffix (the .1). You can create a maximum of three tiers, and
each one can be a load balancing group. For example:

NAE_IP.1=192.168.1.10:192.168.1.11:192.168.1.12

NAE_IP.2=172.17.8.18:172.17.8.19

NAE_IP.3=10.20.5.55:10.20.5.56

Port The port on which the client will communicate with the DataSecure. Your client must use
the same port as the DataSecure, which is set on the NAE Server Settings section on the
Management Console. Each device in a load balancing group must use the same port,
but the port can vary by tier. To vary ports by tier, use the .n suffix, where n is the tier
number.

Possible Settings: The server’s port. The default server port is 9000.
SAFENET PROTECTAPP FOR .NET USER GUIDE

MULTI-TIER LOAD BALANCING 46
Protocol The protocol specified here is the protocol used to communicate between the client and
the DataSecure. Your client must use the same protocol as the DataSecure.

Possible Settings: tcp (default)
ssl (recommended) - To configure ssl you’ll need a server cert, and
perhaps a client certificate, depending on your configuration.

Connection
_Timeout

How long the client will wait for the TCP connection function to return a value. If a
connection cannot be established before the timeout expires, then the server is marked
as down and is taken out of rotation until the Connection_Retry_Interval has passed.

Possible Settings: 30000 (default) - The client will wait 30 seconds.

0 - The client will not force a timeout. The waiting period set by the
client’s OS still applies; the client will wait as long as the TCP stack
normally waits for a connection.

Some value less than your OS’s connection timeout.

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time
unit (milliseconds) is used.

If your application is time-sensitive, set this parameter a few hundred milliseconds less
than your OS’s connection timeout parameter. This will make connections to a down
server fail more quickly, in which case failover will occur sooner.

Connection
_Retry_Interval

How long the client waits before trying to reconnect to an unavailable server.

Possible Settings: 0 - Infinite retry interval - The client will never try to reconnect.

Any positive integer. The default is 600000 ms (10 min).

You can use abbreviations (ms, s, m, h, d) to specify the time units (milliseconds,
seconds, minutes, hours, days). If you do not include an abbreviation, the default time
unit (milliseconds) is used.

If the server or network is under a high load, a connection timeout could occur for a
running sever. If your Connection_Retry_Interval is not long enough, another connection
attempt will be made to the busy server - adding to its already high load.

Parameter Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

MULTI-TIER LOAD BALANCING 47
Examples
EXAMPLE 1 - THE DEFAULTS

As delivered, the IngrianNAE.properties uses the following values:

For this example, let’s set NAE_IP.1=alpha:beta:gamma, NAE_IP.2=psi:omega, and we’ll take the
Connection Configuration Parameters one by one:

Connection_Timeout: The client will get an error if it takes longer than 30seconds to get a
response from a server.

Connection_Retry_Interval: If the client can’t connect to a server within the
Connection_Timeout, the client will take that server out of the round-robin rotation for 10 minutes
(600000 milliseconds).

EXAMPLE 2 - SETTING CONNECTION_TIMEOUT

We’ll still use NAE_IP.1=alpha:beta:gamma, and NAE_IP.2=psi:omega, but this time we’ll set
Connection_Timeout.

Connection_Retry_Intervalis unchanged.

Connection_Timeout: The client will get an error if it takes more than 2 seconds to get a
response from a server. In the event that the server (or your network) is under a heavy load, you
could get a timeout even for a running server. In this case, if you set Connection_Retry_Interval
too low, you’ll just end up bombarding an already overloaded server.

EXAMPLE 3 - AUTOMATIC FAILOVER

You can use the following settings to ensure a speedy failover from one tier to another:

Here’s what happens:

Connection_Timeout: The client will get an error if it can’t get a connection within .01 minutes.

Connection_Retry_Interval: The client will ignore an unavailable server for .01 minutes.

This configuration is useful when testing your Multi-Tier Load Balancing setup.

Connection_Timeout=30000
Connection_Retry_Interval=600000

Connection_Timeout=2000
Connection_Retry_Interval=600000

Connection_Timeout=600
Connection_Retry_Interval=600
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 8

Setting up SSL
This chapter provides an overview of our SSL and SSL with Client Certificate Authentication
features, and provides a walkthrough of both configuration procedures.

This chapter contains the following sections:

SSL Overview 48

SSL Configuration Procedures 49

SSL Walkthrough for SafeNet Clients 52

SSL with Client Certificate Authentication Overview 56

SSL with Client Certificate Authentication Procedures 57

SSL with Client Certificate Authentication Walkthrough for DataSecure Clients 60

SSL Overview
Standard SSL communication requires a certificate that identifies the server. This certificate is
signed by a certificate authority (CA) known to both the server and the client. During the SSL
handshake, the server certificate is passed to the client. The client uses a copy of the CA
certificate to validate the server certificate, thus authenticating the server.

While the CA can be a third-party CA or your corporate CA, you will most likely use a local CA on
the DataSecure appliance. If you are not using a local CA, consult your CA documentation for
instructions on signing requests and exporting certificates.

Tip: SafeNet, Inc. recommends that you increase security only after confirming network
connectivity. You should establish a TCP connection before enabling SSL. Otherwise, an
unrelated network connection mistake could interfere with your SSL setup and complicate the
troubleshooting process.

To use an SSL connection when communicating with the DataSecure appliance, you must
configure both the server and the client.

SETTING UP SSL 49
To configure the server, you must:

• Create a server certificate. (If you’re using a cluster, each member must have its own, unique
certificate.)

This may involve the following steps:

- Creating a Local CA.

- Creating a Server Certificate Request on the Management Console.

- Signing a Server Certificate Request with a Local CA.

• Update the NAE Server settings on the Management Console (Device, NAE Server, NAE
Server).

You’ll need to check Use SSL and select your server certificate in the Server Certificate
field.

To configure the client, you must:

• Place a copy of the CA certificate on your client.

This may involve the following step:

- Downloading the Local CA Certificate.

• Update IngrianNAE.properties file as follows:

• Protocol=ssl

• CA_File=<location and name of the CA certificate file>

SSL Configuration Procedures
This section describes the procedures you will follow when configuring SSL. It explains the
following processes:

• Creating a Local CA
• Creating a Server Certificate Request on the Management Console
• Signing a Server Certificate Request with a Local CA
• Importing a Server Certificate to the DataSecure Appliance
• Downloading the Local CA Certificate
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 50
Creating a Local CA
To create a local CA:

1 Log on to the Management Console as an administrator with Certificate Authorities access
control.

2 Navigate to the Create Local Certificate Authority section on the Certificate and CA
Configuration page (Security, Certificates & CAs, Local CAs).

3 Modify the fields as needed.

4 Select either Self-signed Root CA or Intermediate CA Request as the Certificate Authority
Type.

5 Click Create.

Note: Only a local CA can sign certificate requests on the DataSecure appliance. If you are using
a CA that does not reside on the DataSecure appliance you cannot use the Management Console
to sign certificate requests.

Creating a Server Certificate Request on the Management
Console
To create a server certificate request on the Management Console:

1 Log on to the Management Console as an administrator with Certificates access control.

2 Navigate to the Create Certificate Request section of the Certificate Configuration page
(Security, Certificates & CAs, Certificates) and modify the fields as needed.

3 Click Create Certificate Request. This creates the certificate request and places it in the
Certificate List section of the Certificate and CA Configuration page. The new entry shows
that the Certificate Purpose is Certificate Request and that the Certificate Status is
Request Pending.

Signing a Server Certificate Request with a Local CA
To sign a server certificate request with a local CA:

1 Log in to the Management Console as an administrator with Certificates and Certificate
Authorities access controls.

2 Navigate to the Certificate List section on the Certificate and CA Configuration page (Security,
Certificates & CAs, Certificates).
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 51
3 Select the certificate request and click Properties.

4 Copy the text of the certificate request. The copied text must include the header (-----BEGIN
CERTIFICATE REQUEST-----) and footer (-----END CERTIFICATE REQUEST-----).

5 Navigate to the Local Certificate Authority List (Security, Certificates & CAs, Local CAs).
Select the local CA and click Sign Request to access the Sign Certificate Request section.

6 Modify the fields as shown:

- Sign with Certificate Authority - Select the CA that signs the request.

- Certificate Purpose - Select Server.

- Certificate Duration (days) - Enter the life span of the certificate.

- Certificate Request - Paste all text from the request, including the header and footer.

7 Click Sign Request. This will take you to the CA Certificate Information section.

8 Copy the actual certificate. The copied text must include the header (-----BEGIN
CERTIFICATE-----) and footer (-----END CERTIFICATE-----).

9 Navigate back to the Certificate List section (Security, Certificates & CAs, Certificates). Select
your certificate request and click Properties.

10 Click Install Certificate.

11 Paste the actual certificate in the Certificate Response text box. Click Save. The
Management Console returns you to the Certificate List section. The section will now show
that the Certificate Purpose is Server and that the Certificate Status is Active.

The certificate can now be used as the server certificate for the NAE Server.

Importing a Server Certificate to the DataSecure Appliance
As an alternative to the certificate creation procedure outlined above, you can import a certificate
to the DataSecure appliance.

To import a certificate to the DataSecure appliance:

1 Log in to the Management Console as an administrator with Certificates access control.

2 Navigate to the Import Certificate section of the Certificate and CA Configuration page
(Security, Certificates & CAs, Certificates).

3 Select the method used to import the certificate file.

4 Enter the name of the file and the private key password.

5 Click the Import Certificate button.

The certificate can now be used as the server certificate for the NAE Server.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 52
Downloading the Local CA Certificate
To download a local CA certificate from the DataSecure appliance:

1 Log in to the Management Console as an administrator with Certificate Authorities access
control.

2 Navigate to the Local Certificate Authority List section of the Certificates and CA
Configuration page (Security, Certificates & CAs, Local CAs).

3 Select the Local CA and click the Download button to download the file to your client. You
should place the CA certificate in a secure location and modify access appropriately.

Note: Use the CA_File parameter in the IngrianNAE.properties file to indicate the name and
location of the CA certificate.

SSL Walkthrough for SafeNet Clients
This walkthrough assumes the following:

• You have read the SSL overview section.

• You have configured a TCP connection between your client and the DataSecure appliance.

There are a few different ways that you could configure SSL. For example, you can use a CA that
does not reside on the DataSecure appliance or you can create a new one. This walkthrough
makes such decisions for you. By following these instructions, you will:

• Create a Local CA.

• Create a Certificate Request.

• Create a Server Certificate by signing the Certificate Request with the Local CA.

• Download the Local CA to the client.

Once you have completed and understood this walkthrough, you might decide to alter some of the
steps to better fit your organization’s policies.

To configure SSL:

1 Log in to the Management Console as an administrator with Certificates, Certificate
Authorities, and NAE Server access controls.

2 Navigate to the Create Local Certificate Authority section (Security, Certificates & CAs, Local
CAs). Enter the values shown below to create a new local CA. Click Create.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 53
3 Navigate to the Create Certificate Request section (Security, Certificates & CAs, Certificates).
Enter the values shown below to create a request. Click Create Certificate Request.

4 Select your new certificate request from the Certificate List section (right above the Create
Certificate Request section). Click Properties. Copy the actual request (highlighted below).
Include the header and footer.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 54
5 Navigate back to the Local Certificate Authority List section (Security, Certificates & CAs,
Local CAs). Select your new local CA and click Sign Request.

6 Select Certificate Purpose Server and paste the certificate request into the Certificate
Request field, as shown below.

7 Click Sign Request. This will take you to the CA Certificate Information section.

8 Copy the actual certificate (highlighted below). Include the header and footer.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 55
9 Navigate back to the Certificate List section (Security, Certificates & CAs, Certificates). Select
your certificate request and click Properties.

10 Click Install Certificate.

11 Paste the actual certificate, as shown below. Click Save.

The Certificate List section will now indicate that NewServerCert is an active certificate.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 56
12 Navigate to the NAE Server Settings section (Device, NAE Server, NAE Server). Click Edit.

13 Check Use SSL and select your new server certificate in the Server Certificate field. Click
Save.

14 Navigate back to the Local Certificate Authority List section (Security, Certificates & CAs,
Local CAs). Select your new CA and click Download. Place the CA certificate in a secure
directory on your client.

15 Update the following parameters in your IngrianNAE.properties file:

- Protocol=ssl

- CA_File=<path to CA cert>\localca.crt

You can test your configuration by running the sample.exe application.

You must create an NAE User and an encryption key on the DataSecure appliance. Then use the
following command:

The DataSecure appliance will return an encrypted value for HelloWorld.

For example:

SSL with Client Certificate Authentication Overview
This SSL implementation requires that both the server and the client produce certificates. Each
certificate is signed by a trusted CA known to both the server and the client. Most likely, you will
use one CA to sign both certificates. During the SSL handshake, the certificates are exchanged.
Both the client and the server use the CA certificate to validate one another’s certificate, thus
authenticating the other party.

For more information about setting up SSL, see “SSL Overview” on page 48.

To enable client certificate authentication, you must first successfully configure SSL. Then, you
must make additional configuration changes to the client and server.

Tip: We recommend that you increase security only after confirming network connectivity. You
should establish an SSL connection before enabling Client Certificate Authentication. Otherwise,
an SSL configuration mistake could interfere with your Client Certificate Authentication setup and
complicate the troubleshooting process.

sample IngrianNAE.properties username password keyname algorithm iv
HelloWorld

sample IngrianNAE.properties user1 qwerty key1 AES/CBC/PKCS5Padding
abcdefghabcdefgh HelloWorld

98 ed 2f 96 be 56 91 4f 20 d5 42 6f 42 e2 a6 ca
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 57
To configure the client, you must:

• Create a client certificate.

This may involve the following steps:

- Generating a Client Certificate Request with req.exe.

- Signing a Certificate Request and Downloading the Certificate.

You can create a certificate request using the req.exe utility or OpenSSL. You can then sign
the request with the local CA on the DataSecure appliance. Once signed, the certificate
request becomes a valid certificate.

If you are not using a local CA, consult your CA documentation for instructions on signing
requests and exporting certificates.

• Update IngrianNAE.properties file as follows:

• Cert_File=<location and name of the client certificate>

• Key_File=<location and name of the client’s key file>

• Passphrase=<the passphrase used to unlock the client’s key file>

To configure the server, you must:

• Place a copy of the CA certificate on your server.

This may involve the following steps:

- Installing a CA Certificate on the Server.

- Adding a CA to a Trusted CA List Profile.

• Update the NAE Server Authentication Settings section on the Management Console
(Device, NAE Server, NAE Server).

You’ll need to select either Used for SSL session only or Used for SSL session and NAE
username in the Client Certificate Authentication field. The profile listed in the Trusted CA
List Profile field must include the CA used to sign the client certificate. You can update the
other fields as needed.

SSL with Client Certificate Authentication Procedures
This section describes the procedures you will follow when configuring SSL with Client Certificate
Authentication. It explains the following processes:

• Generating a Client Certificate Request with req.exe
• Signing a Certificate Request and Downloading the Certificate
• Installing a CA Certificate on the Server
• Adding a CA to a Trusted CA List Profile
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 58
Generating a Client Certificate Request with req.exe
To generate a client certificate request:

1 Open a command prompt window and navigate to the directory where the Certificate Request
Generator utility (req.exe) is installed.

2 Generate an RSA key and a client certificate request using the following command:

where clientreq is the name of the certificate request being created, and clientkey is the name
of the private key associated with the certificate request.

If you are using OpenSSL, use the following command:

Note: The certificate request and private key will both be created in the working directory by
default. You can generate them in another directory by including a location in the request and
key names. For example, to create them in the C:\certs folder, use the following command:

Note: When the FIPS mode is enabled, the private key needs to be converted into the
PKCS#8 format. To convert the clientkey generated above into the PKCS#8 format, use the
following command:

In the above command:

- in – Specifies the existing private key format file that is used in non-FIPS mode.

- out – Specifies the output PKCS#8 private key format file for use in FIPS mode.

The key generation process will then request the following data:

- A PEM passphrase to encode the private key.

The passphrase that encodes the private key is the first passphrase you provide after
issuing the command above. This will be the Passphrase parameter in the
IngrianNAE.properties file.

- The distinguished name.

The distinguished name is a series of fields whose values are incorporated into the
certificate request. These fields include country name, state or province name, locality
name, organization name, organizational unit name, common name, email address,
surname, user ID, and IP address.

req -out clientreq -newkey rsa:1024 -keyout clientkey

openssl req -out clientreq -newkey rsa:1024 -keyout clientkey

openssl req -out C:\certs\clientreq -newkey rsa:1024 -keyout
C:\certs\clientkey

openssl.exe pkcs8 -topk8 -in clientkey -out p8clientkey -v2 des3
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 59
For more information about deriving NAE usernames and authenticating client IP addresses,
see “Authentication Overview” in the DataSecure Appliance User Guide.

If you will derive the NAE username from the client certificate, be sure to enter a value in
the appropriate field when prompted.

If you will require client certificates to contain a source IP address, be sure to enter the IP
address when prompted.

- A challenge password.

This challenge password is NOT used in the DataSecure environment.

- An optional company name.

Signing a Certificate Request and Downloading the Certificate
This section describes how to sign a certificate request with a local CA and then download the
certificate. You must download the certificate immediately after it is signed by the CA.

To sign a certificate request with a local CA:

1 Open the certificate request in a text editor.

2 Copy the text of the certificate request. The copied text must include the header (-----BEGIN
CERTIFICATE REQUEST-----) and the footer (-----END CERTIFICATE REQUEST-----).

3 Log in to the DataSecure appliance as an administrator with Certificate Authorities access
control.

4 Navigate to the Local Certificate Authority List (Security, Certificates & CAs, Local CAs).
Select the local CA and click Sign Request to access the Sign Certificate Request section.

5 Modify the fields as shown:

- Sign with Certificate Authority - Select the CA that signs the request.

- Certificate Purpose - Select Client.

- Certificate Duration (days) - Enter the life span of the certificate.

- Certificate Request - Paste all text from the request, including the header and footer.

6 Click Sign Request. This will take you to the CA Certificate Information section.

7 Click the Download button to save the certificate on your local machine. You should place
the certificate in a secure location and modify access appropriately.

Note: Use the Cert_File parameter in the IngrianNAE.properties file to indicate the name and
location of the client certificate.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 60
Installing a CA Certificate on the Server
If the client certificate was signed by a non-local CA, you must install the CA certificate on the
DataSecure appliance. To install a CA Certificate:

1 Log in to the DataSecure appliance as an administrator with Certificate Authorities access
control.

2 Navigate to the Install CA Certificate section on the Certificate Authority Configuration page
(Security, Certificates & CAs, Known CAs).

3 Enter the Certificate Name.

4 Paste all text from the certificate in the Certificate field, including the header and footer.

5 Click the Install button.

Adding a CA to a Trusted CA List Profile
To add the CA that signed the client certificate to the Trusted CA List Profile:

1 Log in to the DataSecure appliance as an administrator with Certificate Authorities access
control.

2 Navigate to the Trusted Certificate Authority List Profiles section on the Certificate and CA
Configuration page (Security, Certificates & CAs, Trusted CA Lists).

3 Select the profile to which you want to add the CA.

4 Click the Properties button.

5 Click the Edit button in the Trusted Certificate Authority List section.

6 Select the CA in the Available CAs field and click the Add button. This moves your CA from
the Available CAs field to the Trusted CAs field.

7 Click the Save button.

Note: To enable SSL with Client Certificate Authority, the Profile containing the CA that signed
the client certificate must be selected as the Trusted CA List Profile on the NAE Server
Authentication Settings section.

SSL with Client Certificate Authentication Walkthrough for
DataSecure Clients
This walkthrough assumes the following:
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 61
• You have read the SSL with Client Certificate Authentication overview section.

• You have successfully completed the SSL Walkthrough for DataSecure Clients. You must use
the Local CA created in that walkthrough. The instructions below assume that the client and
server certificates were signed by the same local CA.

There are a few different ways that you could configure SSL with Client Certificate Authentication.
For example, you can use a CA that does not reside on the DataSecure appliance or you can
create a new one. This walkthrough makes such decisions for you. By following these instructions,
you will:

• Create a Client Certificate Request using req.exe.

• Create a Client Certificate by signing the Client Certificate Request with the Local CA on the
DataSecure appliance.

• Add the Local CA to the Trusted CA List.

Once you have completed and understood this walkthrough, you might decide to alter some of the
steps to better fit your organization’s policies.

To configure client certificate authentication:

1 Open a command prompt window on the client and navigate to the directory that contains
req.exe.

2 Generate an RSA key and a client certificate request using the following command:

where the certificate request, clientreq, and the private key, clientkey, are created in the ssl
directory.

If you are using OpenSSL, use the following command:

The key generation process will then request the following data:

- A PEM passphrase to encode the private key.

The passphrase that encodes the private key is the first passphrase you provide after
issuing the command above. This will be the Passphrase parameter in the
IngrianNAE.properties file.

- The distinguished name.

The distinguished name is a series of fields whose values are incorporated into the
certificate request. These fields include country name, state or province name, locality
name, organization name, organizational unit name, common name, email address,
surname, user ID, and IP address.

req -out ssl\clientreq -newkey rsa:1024 -keyout ssl\clientkey

openssl req -out ssl\clientreq -newkey rsa:1024 -keyout
ssl\clientkey
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 62
For more information about deriving NAE usernames and authenticating client IP addresses,
see “Authentication Overview” in the DataSecure Appliance User Guide.

If you will derive the NAE username from the client certificate, be sure to enter a value in
the appropriate field when prompted.

If you will require client certificates to contain a source IP address, be sure to enter the IP
address when prompted.

- A challenge password.

This challenge password is NOT used in the DataSecure environment.

- An optional company name.

3 Open the client certificate request file and copy the actual request (highlighted below).
Include the header and footer.

4 Log in to the Management Console as an administrator with Certificate Authorities access
control.

5 Navigate to the Local Certificate Authority List section (Security, Certificates & CAs, Local
CAs). Select NewLocalCA and click Sign Request. (NewLocalCA is the CA you created in
the SSL Walkthrough.)

6 Select Certificate Purpose Client and paste the certificate request into the Certificate
Request field, as shown below.

7 Click Sign Request. This will take you to the CA Certificate Information section.

8 Click Download to download your new client certificate (signed.crt) to your client. Place the
certificate in a secure directory on your client.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SETTING UP SSL 63
9 Navigate to the Trusted Certificate Authority List Profiles section (Security, Certificates & CAs,
Trusted CA Lists). Select Profile Name Default and click Properties.

10 Click Edit in the Trusted Certificate Authority List section.

11 Select NewLocalCA in Available CAs and click Add. Click Save.

12 Update the following parameters in the IngrianNAE.properties file:

- Cert_File=<path to client cert>\client.crt

- Key_File=<path to client key>\clientkey

- Passphrase=<the passphrase used to unlock the client’s key file>

13 Return to the Management Console and navigate to the NAE Server Authentication Settings
section (Device Management, NAE Server) and enter the following values:

- Client Certificate Authentication: Used for SSL Session only

- Trusted CA List Profile: Default

Important! The CA used to sign the client certificate must be a member of the Trusted
CA List Profile.

You can test your configuration by running the sample.exe application.

You must create an NAE User and an encryption key on the DataSecure appliance. Then use the
following command:

The DataSecure appliance will return an encrypted value for HelloWorld.

For example:

sample IngrianNAE.properties username password keyname algorithm iv
HelloWorld

sample IngrianNAE.properties user1 qwerty key1 AES/CBC/PKCS5Padding
abcdefghabcdefgh HelloWorld

98 ed 2f 96 be 56 91 4f 20 d5 42 6f 42 e2 a6 ca
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 9

Creating an NAESession
This chapter contains the following sections:

Creating a Global Session to a DataSecure 64

Creating an Authenticated Session to a DataSecure 64

Creating a Global Session to a DataSecure
You can connect to the server by creating a session object without arguments. This creates an
unauthenticated (global) session, which gives the client application the ability to create and access
global keys. Whether your client can use global sessions is determined by the DataSecure
settings. If password authentication is required, then global sessions are effectively disallowed.

Creating an Authenticated Session to a DataSecure
Creating an authenticated session is similar to the example above, except this time your
application must pass in a username and password to the session object. If the username and
password are valid, the client application will be authenticated and will have the ability to create
keys, access keys owned by the user, and access keys available to any groups to which the user
belongs.

NAESession * session = new NAESession();

NAESession * session = new NAESession(userName, password);

CHAPTER 10

Working with Keys
This chapter contains the following sections:

Listing All Keys Available on the DataSecure 65

Obtaining an Instance of a Key 65

Obtaining an Instance of a Key - Alternate Method 66

Deleting a Key Using the Key Name 66

Creating a Key 66

Importing a Symmetric Key 67

Importing an Asymmetric Key 68

Setting the Key Mode and Padding 68

Listing All Keys Available on the DataSecure
If your client application is connected to the server via a global session, then it will only be able to
see global keys; if it is connected via an authenticated session, then it will see all global keys, all
keys owned by the user it is logged in as, and all keys available to any groups to which the user
belongs.

This call will return an array of strings containing the key names available to the user. The server
does not indicate what type of keys are being returned.

Obtaining an Instance of a Key
This example demonstrates the standard way of obtaining an instance of an AES key. To obtain an
AES key, your client should create a new NAERijndaelKey object, passing in the session object
and the name of the key on the DataSecure. This will create an instance of an NAERijndaelKey
object that can be used to encrypt and decrypt data. If the keyName passed in to the DataSecure

String * sKeyNamesA[] = session->GetKeyNames();

WORKING WITH KEYS 66
does not match an actual key on the DataSecure, or if there is a key that matches, but that key is
of a different type, an exception will be thrown and the operation will fail.

The key object can be used as a RijndaelKey, which is the superclass of the NAERijndaelKey
class. There are similar objects for obtaining DES, DESede, RSA and HMACSHA1 keys.

Obtaining an Instance of a Key - Alternate Method
This example will demonstrate an alternate method for obtaining an instance of a key. The
alternate method is a bit slower than the standard method because the NAEKey object must be
cast to the appropriate key type once the instance of the key is obtained.

To get an instance of a key, create an NAEKey object by calling the GetKey method of the
NAESession class on the session object, passing in the name of the key you want to access as an
argument.

Deleting a Key Using the Key Name
Keys can be deleted in one of two ways. One option is to pass in the key name you want to delete;
the other option is to pass in a key object instead. In both cases, you will call the DeleteKey
method of the NAESession class. To delete a key by passing in the key name in a string, use the
call below:

To delete the key by passing in a key object, use this call:

Creating a Key
In this example, we’ll create a 128-bit AES key and assign permission to encrypt and decrypt to
Group1; in addition, we’ll make the key deletable and exportable. The same logic applies for DES,
DESede, RSA, and HMACSHA1 keys; however, when assigning permissions to RSA keys, you
must use the NAEAsymmetricKeyPermissions class instead of NAESymmetricKeyPermissions.
Likewise, when assigning permissions to HMAC keys, you must use NAEKeyedHashPermissions.

The first step in this process is to create a new key object. The key will actually be created on the
DataSecure in the last step when we call GenerateKey() and specify a name for the key. Before
calling GenerateKey(), though, you can specify group permissions for the key. This is done by

NAERijndaelKey * key = new NAERijndaelKey(session, keyName);

NAEKey * key = session->GetKey(keyName);

session->DeleteKey(keyName);

session->DeleteKey(key);
SAFENET PROTECTAPP FOR .NET USER GUIDE

WORKING WITH KEYS 67
creating a new permissions object and specifying which attributes you want the key to have in that
permissions object. The properties of the permissions object are Group, CanEncrypt, and
CanDecrypt; Group is a string value, and the other two are boolean values. The KeySize attribute
comes from the RijndaelKey superclass.

Importing a Symmetric Key
In this example, we’ll import an AES key. Again, the logic to import other types of keys is similar to
what is shown below, with the exception that you will use a class other than NAERijndaelKey. The
example below is broken up into two sections: in the first section we create an
NAESymmetricKeyPermissions object and assign permissions. In the second section, we import
the key.

In this example, we will allow Group1 to encrypt and decrypt with the key, Group2 is allowed to
encrypt with the key, and Group3 is allowed to decrypt with the key. To set these permissions we
create an NAESymmetricKeyPermissions object with three members, and then we assign values
to each member in the array.

Making the key deletable and exportable has been demonstrated in previous examples; what is
new in this code sample is the line that actually associates the NAESymmetricKeyPermissions
object with the key object. And finally, we call the ImportKey method of the NAESession class,
passing in the name of the imported key and the bytes of the key to import.

NAERijndaelKey * key = new NAERijndaelKey(session);
key->GroupPermissions = new NAESymmetricKeyPermissions("Group1", true,
true);
key->KeySize = 128;
key->IsDeletable = true;
key->IsExportable = true;
key->GenerateKey(keyName); // provide a name for the key here.

NAESymmetricKeyPermissions* permsA __gc[];
permsA = new NAESymmetricKeyPermissions* __gc[3];
permsA[0] = new NAESymmetricKeyPermissions("group1", true, true);
permsA[1] = new NAESymmetricKeyPermissions("group2", true, false);
permsA[2] = new NAESymmetricKeyPermissions("group3", false, true);

NAERijndaelKey * newKey = new NAERijndaelKey(session);
newKey->IsDeletable = true;
newKey->IsExportable = true;
newKey->GroupPermissions = permsA;
newKey->KeySize = oldKey->KeySize;
newKey->ImportKey(newKeyname, oldKey->Key);
SAFENET PROTECTAPP FOR .NET USER GUIDE

WORKING WITH KEYS 68
Importing an Asymmetric Key
You might notice that the code to import an RSA key is similar to the code above. The difference is
that there are more group permissions to set because RSA keys can be used to encrypt and
decrypt data and to generate signatures. In addition, when calling ImportKey, you must pass in an
RSAParameters object with the key bytes. In the example below, oldKey is an instance of the key
to import, and newKeyName is the name the key will have on the DataSecure. The true flag
passed into the ExportParameters method indicates that both the public and private parts of the
key will be imported. This is required.

The five properties of the NAEAsymmetricKeyPermissions object are:

• group name (string)

• private key – True if group members can use the private key to decrypt.

• public key – True if group members can use the public key to encrypt.

• sign – True if members of the group can use the key to sign data.

• verify – True if group members can use the key to verify signatures.

Setting the Key Mode and Padding
You can set the key mode and padding for a symmetric key (AES, DES, or DESede) for an entire
session. These values are stored until the program exits. Each subsequent time you access the
key, the values stored in memory are used, unless you override them when you access the key.

NAERSAKey * newKey = new NAERSAKey(session);
newKey->IsDeletable = true;
newKey->IsExportable = true;
newKey->GroupPermissions = new NAEAsymmetricKeyPermissions("Group1",
true, true, true, true);
newKey->ImportKey(newKeyName, oldKey->ExportParameters(true));

key->Mode = CipherMode::CBC;
key->Padding = PaddingMode::PKCS7;
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 11

Using Versioned Keys
This chapter contains the following sections:

Overview 69

Creating a Versioned Key 70

Creating a New Version 70

Activate, Restrict, or Retire a Version 70

Using a Versioned Key to Encrypt, Sign, and MAC 70

Using a Versioned Key to Decrypt, SignV, and MACV 71

Overview
A versioned key maintains the same key metadata (key
name, owner, algorithm, key size, etc), but has a unique set
of bytes for each version. Thus, each version is different
enough for encryption purposes, but similar enough to
allow for easy management.

Each key version has its own key bytes, default IV, state,
and creation date. The state determines which operations
are available for a key version. Possible states are: active,
restricted, and retired.

• Active: encryption and decryption and all key
management options are allowed.

• Restricted: only key information operations are
allowed.

• Retired: no operations or access to key management
is allowed.

The state, combined with the key type and group permissions determine how the key version can
be used. Ultimately, a key version can only be used when: the key’s group permissions permit the

USING VERSIONED KEYS 70
operation, the key version’s state permits the operation, and the request comes from a member of
the permitted group.

A key can have a maximum of 4000 versions.

Creating a Versioned Key
You cannot use ProtectApp for .NET to create a versioned key. You can instead create the key on
the Management Console.

Creating a New Version
You cannot use ProtectApp for .NETto create a new version of a key. You can instead create the
new version on the Management Console.

Activate, Restrict, or Retire a Version
You cannot use ProtectApp for .NET to alter the state of a key version. You can instead modify the
key version on the Management Console.

Using a Versioned Key to Encrypt, Sign, and MAC
To encrypt, sign, and generate MACs, your code must create an instance of a key. When using a
versioned key, you can create an instance of the default version, or a specific version. The code is
similar for each.

You can only encrypt, sign, and generate MACs using active versions of a key.

To access the default version of a versioned key, call the same method the same way you access
a non-versioned key. The DataSecure will return the latest active version.

// for DES key
DES* defaultKey = new NAEDesKey(session, "YourDES");

// for AES key
NAERijndaelKey * key = new NAERijndaelKey(session, "YourAES");

// for RSA key
NAERSAKey * key = new NAERSAKey(session, "YourRSA");
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING VERSIONED KEYS 71
To create an instance of a specific key version, you must append a # plus the version number.
These statements will return version two of the key:

Using a Versioned Key to Decrypt, SignV, and MACV
When data is encrypted, signed, or MACed using a versioned key, the resulting ciphertext contains
information in its header indicating which version of the key was used. This header is 3 bytes long.
During decryption or verification process, the DataSecure parses this information and applies the
correct key version. There is no need to specify the key version.

Note: If the data requires a retired key version, you will get an exception.

// for DES key
DES* secVersion = new NAEDesKey(session, "YourDES#2");

// for AES key
NAERijndaelKey* secVersion = new NAERijndaelKey(session, "YourAES#2");

// for RSA key
NAERSAKey* secVersion = new NAERSAKey(session, "YourRSA#2");
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 12

Symmetric Key Caching
This chapter contains the following sections:

Overview 72

How it Works 73

Related IngrianNAE.properties Parameters 73

Logging 74

Overview
The key caching feature enables you to export symmetric keys from the DataSecure and store
them on the client for a limited time in order to perform cryptographic operations locally.

Keys cached on the client are stored in process memory only, they are not stored on disk.

This feature can improve performance, specifically if network latency is high, encryption sizes are
small, and local CPU cycles are available. Once keys are cached, your client’s crypto operations
can continue without access to the server.

Only symmetric keys (AES, DES, DESede, SEED, RC4) that have been marked Exportable may
be cached. In addition, the user must have export privileges for the key. Thus, the user must be
the key owner or the key must be global. The user automatically has full encryption and decryption
privileges for all keys in the client cache; while in the cache, key permissions and authorization
policies are ignored.

WARNING! Your client and its connection to the DataSecure must be secure. Downloading keys
over this connection and storing them on your client exposes them to possible attack. When using
the symmetric key caching feature, be sure that you are using a secure method of download and
that your client’s operating system is secure.

SYMMETRIC KEY CACHING 73
Supported Functions
The following functions are supported by the symmetric key cache feature (all other functions
require access to the DataSecure):

• NAESession - Use the NAESession constructor that requires the following parameters:
String* Username, String* Password, String* Passphrase.

Note: You cannot use NAESession’s GetKey(String* keyName) method without access to the
DataSecure. This is because the method can’t determine the algorithm name without connecting
to the server.

How it Works
The following steps describe what happens when the feature is enabled and the client requests a
key:

1 The client requests a key.

2 The client checks if Symmetric_Key_Cache_Enabled is yes (or tcp_ok). If the feature is
enabled, the client will search the for the key in the key cache.

3 The client does not find the key in the cache.

4 The client requests the key from the server. If the user has permission and the key is
exportable, the server will download the key to the client. The key is stored in the cache.

5 Subsequent requests for that key will utilize the key cache until the time set in
Symmetric_Key_Cache_Expiry has passed.

Related IngrianNAE.properties Parameters
To use the symmetric key cache, you will have to set the following parameters in the properties file:

Parameter Description

Symmetric_
Key_Cache
_Enabled

Enables symmetric key caching. This value must be set to yes or tcp_ok. Selecting yes
enables key caching over an SSL connection, so you must also configure SSL. Selecting
tcp_ok enables key caching over both tcp and ssl connections.

WARNING! TCP is not a secure communication protocol.

Symmetric_
Key_Cache_
Expiry

The time after which a key may be removed from the symmetric key cache. The cache is
only cleaned when it is used, therefore, keys may stay in the cache longer than this value.

This value must be smaller than Persistent_Cache_Expiry_Keys. Otherwise, keys will
be removed from the persistent key cache before they expire from the symmetric key
cache.
SAFENET PROTECTAPP FOR .NET USER GUIDE

SYMMETRIC KEY CACHING 74
Logging
The server will log all key downloads in the NAE log. The client will log when key caching is
enabled. When Log_Level is set to HIGH, the client will log the following actions:

• key downloads.

• use of downloaded key.

• deletion of key from cache.

• deletion of key from cache.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 13

Persistent Key Caching
This chapter contains the following sections:

Overview 75

Supported Functions 76

How it Works 76

Related IngrianNAE.properties Parameters 77

Logging 78

Tips 78

Overview
The persistent key cache is a secure cache on the client’s disk that is used to store keys that have
been downloaded from the DataSecure appliance. This cache is used when a key does not exist in
the symmetric key cache and when the client can’t connect to the server to access the key.

The persistent key cache can only be accessed when the correct passphrase is used. The key
cache is not transferable between users, client applications, or platforms.

Note: Key caches created using v4.8.0 of a SafeNet client are not valid when using v4.8.5 of the
SafeNet client. When you install v4.8.5, you must remove the old key cache and create a new one.

Unlike the symmetric key cache, which stores keys in memory, the persistent key cache is saved
to disk.

Note: The key cache does not store IVs. You must store those values elsewhere.

Note: The key cache does not support versioned keys.

Note: Only symmetric keys (those based on AES, DES, DESede, SEED, and RC4 algorithms)
can be cached. Keys based on RSA and HMAC-SHA1 algorithms cannot be cached.

Important! Downloading keys from the DataSecure appliance poses a security threat. You must
ensure that your network is secure before using this feature. Downloading keys from the
DataSecure to your client exposes them to attack.

PERSISTENT KEY CACHING 76
Supported Functions
The following functions are supported by the persistent key cache feature (all other functions
require access to the DataSecure):

• NAESession - Use the NAESession constructor that requires the following parameters:
String* Username, String* Password, String* Passphrase.

Note: You cannot use NAESession’s GetKey(String* keyName) method without access to the
DataSecure. This is because the method can’t determine the algorithm name without connecting
to the server.

How it Works
There are 2 scenarios in which the client would use the persistent key cache: when a key is
downloaded to the symmetric key cache; and when the client’s connection to the DataSecure is
disrupted.

The following steps describe what happens when the
feature is enabled and a key is downloaded to the
symmetric key cache:

1 Your application requests a key. The client checks
that symmetric key caching is enabled. The feature is
enabled, so the client searches the symmetric key
cache. The key is not found.

2 The client connects to the DataSecure. The server
checks that the key is exportable and that the user
has permission to export.

3 The key is exported. The client checks that the
persistent key cache is enabled. The feature is
enabled and the downloaded key is stored in the
persistent key cache and the symmetric key cache.
SAFENET PROTECTAPP FOR .NET USER GUIDE

PERSISTENT KEY CACHING 77
The following steps describe what happens when the feature is enabled and the client’s
connection to the DataSecure is disrupted.

1 Your application requests a key. The client checks
that symmetric key caching is enabled. The feature is
enabled, so the client searches the symmetric key
cache. The key is not found.

2 The client attempts to connect to the DataSecure.
The attempt fails. The client will not attempt another
connection until the Connection_Retry_Interval has
passed. During this period, key requests that would
normally be sent to the DataSecure will be sent to the
persistent key cache.

3 The client checks that persistent key cache is
enabled. The feature is enabled, so the client
searches the persistent key cache for the key.

4 The key is found, copied to the symmetric key cache,
and used. If the key was not found in the persistent
key cache, the client would send an error message.

Related IngrianNAE.properties
Parameters
To use the persistent key cache, you will have to set the following parameters in the properties file:

Parameter Description

Symmetric
_Key_Cache
_Enabled

Enables symmetric key caching. This value must be set to yes or tcp_ok.

Symmetric
_Key_Cache
_Expiry

The time after which a key may be removed from the symmetric key cache. The cache is
only cleaned when it is used, therefore, keys may stay in the cache longer than this value.

This value must be smaller than Persistent_Cache_Expiry_Keys. Otherwise, keys will
be removed from the persistent key cache before they expire from the symmetric key
cache.

Persistent
_Cache
_Enabled

Enables the persistent key cache. This value must be set to yes.
SAFENET PROTECTAPP FOR .NET USER GUIDE

PERSISTENT KEY CACHING 78
Logging
The server will log all key downloads in the NAE log. The client will log the following actions:

• enabling persistent key storage.

• key downloads.

• use of downloaded key.

• deletion of key from cache.

Tips

Pre-Loading Keys
If you have advanced notice that your server will be offline, you can pre-load keys to ensure that
your persistent key cache will be populated when you need it. You can use the session.GetKey()
function to download the key to the persistent key store.

Persistent
_Cache
_Directory

The directory in which the persistent key cache is located. The actual cache file name
uses the base name keycache, plus a suffix based on the NAE username. For example,
the cache for user1 is keycache_user1. When the username contains an upper case
letter, those letters are preceded by #. The cache for UserAlpha, for example, is
keycache_#user#alpha. The cache for global users is keycache_no#user.

This value must be set to an existing directory.

Persistent
_Cache_Expiry
_Keys

The time after which a key may be removed from the cache. Setting this to 0 disables the
timeout; keys would not be removed from the cache. This value must be larger than
Symmetric_Key_Cache_Expiry.

Persistent
_Cache_Max
_Size

Limits the number of keys in the persistent cache.

Parameter Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

PERSISTENT KEY CACHING 79
Troubleshooting

Problem Solution

Key won’t download to the cache Check the key’s exportable setting. Only exportable keys can be
downloaded to the symmetric key and persistent key caches.

Keys are staying in the cache longer
than the expiration maximum.

Call the library. The persistent key cache is only cleaned when it is
called, therefore, keys may stay in the cache longer than the
Persistent_Cache_Expiry_Keys setting.

Can’t create keys when server
connection is disrupted.

This works as designed. The persistent key cache is not used for
creating keys. The client can only create keys by connecting to the
DataSecure server.
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 14

Working with Certificates
This chapter contains the following sections:

Importing a Certificate 80

Exporting a Certificate 81

Exporting a CA Chain 82

Deleting a Certificate 82

Importing a Certificate
You can import a certificate to the DataSecure from your application. The DataSecure determines
the certificate format from the certificate itself. When importing, set the deletable and exportable
flags. If the certificate is in PKCS#12 format, include the password in the last parameter. Otherwise
pass a null there.

The method call uses the following syntax:

Assuming the NAESession is session, and that byteArray contains the certificate, the following call
imports YourCertificate to the DataSecure.

In this example, the certificate is not in PKCS#12 format, so the password parameter contains a
null.

The following call imports YourPKCS12Certificate to the DataSecure.

NAESession.ImportCertificate (String* certificateName, bool deletable,
bool exportable, Byte[] certificateBytes, SecureString* password);

session.ImportCertificate("YourCertificate", true, true, byteArray,
null);

session.ImportCertificate("YourPKCS12Certificate", true, true, byteAr-
ray, YourCertPassword);

WORKING WITH CERTIFICATES 81
Note: Certificates imported to the DataSecure using this method appear in the Management
Console’s Key and Policy Configuration page and not on the Certificate and CA Configuration
page.

Exporting a Certificate
You have a few options when exporting a certificate from the DataSecure to your application,
depending on the format of the certificate, and if you are exporting the private key. All of these
options are methods of NAESession.

Export the Certificate Only - ExportCertificate

You can call ExportCertificate() to get the certificate in PEM format. Any private key associated
with the certificate is ignored. The certificate itself must be exportable - it must have the exportable
flag set to yes, otherwise you will get an error.

The method call uses the following syntax:

Assuming the NAESession name is session, the following call puts YourCertificate in a byte array.

Export the Certificate and the Private Key - ExportCertificateByFormat

Use ExportCertificateByFormat() to export the certificate and the private key from the DataSecure.

The method call uses the following syntax:

NAEConstant::NAECertificate accepts the following values:

• PEM_PKCS1 - requests the certificate in PEM format and the private key in PKCS#1.

• PEM_PKCS8 - requests the certificate in PEM format and the private key in PKCS#8.

• PKCS12 - requests both the certificate and the private key in PKCS#12 format.

Assuming the NAESession name is session, the following calls put the certificates and keys in
byte arrays:

NAESession.ExportCertificate (String* certificateName);

byteArray = session.ExportCertificate("YourCertificate");

NAESession.ExportCertificateByFormat (String* certificateName, NAECon-
stant::NAECertificateFormat eformat, SecureString* password);
SAFENET PROTECTAPP FOR .NET USER GUIDE

WORKING WITH CERTIFICATES 82
Exporting a CA Chain
Exporting a CA Chain is a simple call to the ExportCaChain method.

Deleting a Certificate
To delete a certificate from the DataSecure, call DeleteCertificate. The certificate must be flagged
as deletable, which, if it wasn’t done when the certificate was imported to the DataSecure, must
have happened using the Management Console.

byteArray = session.ExportCertificateByFormat ("YourCertificate1", NAE-
Constant.NAECertFormat.PEM_PKCS1, null);

byteArray = session.ExportCertificateByFormat ("YourCertificate8", NAE-
Constant.NAECertFormat.PEM_PKCS8, null);

byteArray = session.ExportCertificateByFormat ("YourCertificate12", NAE-
Constant.NAECertFormat.PKCS12, password);

byteArray = session.ExportCaChain("RootCA");

session.DeleteCertificate("YourCertificate");
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 15

Encrypting and Decrypting Data
The examples below show how to encrypt and decrypt a small piece of data. The max data size
for an individual crypto call is 168,000 bytes.

This chapter contains the following sections:

Encrypting a String Using an AES Key 83

Decrypting a String Using an AES Key 85

Encrypting a String Using an RSA Key 86

Decrypting a String Using an RSA Key 86

Encrypting a File 87

Decrypting a File 89

Encrypting a String Using an AES Key
In this example, we encrypt a string with an AES key. The name of the key is “generic_aes_key.”
Because AES is a block cipher, you must send data to the server in chunks of 16 bytes. Our string
size is not a multiple of 16, so we’ll set the key to CBC mode. This will use padding to meet the 16
byte requirement. In CBC mode, the AES algorithm requires a 16 byte initialization vector (IV).

The code sample below is broken up into five sections: (1) variable declaration, (2) preparing the
key object for encryption, (3) supplying text for encryption and generating an IV, (4) performing the
encryption, and (5) converting the ciphertext to Base64 so that it can be printed. (The first section
is self explanatory, so we won’t discuss it in detail.)

In the second section, we create a session object. Then get an instance of the key you want to
use for the encrypt operation. In this example, the key we use is “generic_aes_key,” but you can
use any AES key on your server. After obtaining an instance of the key, the key is set to CBC
mode, and PKCS7 padding is specified. You can use no padding; however, this would require that
the size of the data you are encrypting is some multiple of 16. Using the padding option ensures
that encrypt operations will not fail because the client did not send enough data to the server.

In the third section, the first thing we do is create a UTF8Encoding object, which is used in the
next line to convert the input string to bytes. In the third line, we create an

ENCRYPTING AND DECRYPTING DATA 84
NAERandomNumberGenerator object, and in the fourth line, we call GetBytes on that object,
passing in the NAE session object and the randomData array. Remember that the randomData
array is only 16 bytes, which effectively tells the DataSecure to generate only 16 bytes of random
data. These random bytes will be passed to the server during the encrypt operation as the IV. It is
important that you retain these random bytes for the subsequent decrypt operation. If the IV you
provide for the decrypt operation differs from what you provided for the encrypt operation, you will
not be able to decrypt your ciphertext.

Note: If were using DES or DESede instead of AES, then the IV would only be 8 bytes.

In the fourth section, we will perform the encrypt operation. The first step is to create a base
memory stream to act as a buffer for the encrypt operation. Next, we create a CryptoStream object
by calling the standard CryptoStream constructor. In this call, we will pass in the key and the IV,
and set the mode to write. The third step is to do the actual encryption by calling the Write method
of the CryptoStream object, passing in inputBytes for the buffer parameter, 0 as the offset, and the
length of the plaintext (which is obtained by calling the Length method on inputBytes). Because we
are using a small string, we only need one encrypt call.

The fifth section prints the ciphertext. This is optional.

The example above provides an example of one way to pass in an IV. The .NET framework
provides some flexibility in this respect. If you do not want to pass in an IV, you can simply call
key->CreateEncryptor(), and a random IV will be generated for you. You can then use the

UTF8Encoding * utf8;
CryptoStream * ostr;
unsigned char inputBytes __gc[];
MemoryStream * memstr;
Byte randomData[] = new Byte[16];

NAESession * session = new NAESession(username, password);
NAERijndaelKey * key = new NAERijndaelKey(session, "generic_aes_key");
// "generix_aes_key" must be on the server
key->Mode = CipherMode::CBC;
key->Padding = PaddingMode::PKCS7;

utf8 = new UTF8Encoding();
inputBytes = utf8->GetBytes("abcd"); // Convert string to bytes
NAERandomNumberGenerator * rng = new NAERandomNumberGenerator (session);
rng->GetBytes(session, randomData); // Get a random IV.

memstr = new MemoryStream();
ostr = new CryptoStream(memstr, key->CreateEncryptor(randomData), Cryp-
toStreamMode::Write);
ostr->Write(inputBytes, 0, inputBytes->Length);
ostr->Close();

unsigned char tempChar __gc[] = memstr->ToArray();
String * sEncrypted = Convert::ToBase64String(tempChar);
SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 85
line below to capture the random IV:

Another way to pass in your own IV is to call:

Decrypting a String Using an AES Key
Because the logic of the decrypt operation follows the encrypt operation so closely, we will not go
into as much detail describing the code below. Instead, we will highlight a few things. Again, the
code is divided into five sections. In the first section, we use the same variables from the encrypt
operation. Remember, the randomData variable contains the IV, so do not initialize that variable.

The second section of the decrypt operation (where we obtain an instance of the key) is exactly
the same as the second section of the encrypt operation.

The first two lines of the third section are similar between the encrypt and decrypt operations.
Because the ciphertext was converted to Base64 at the end of the encrypt operation, you need to
convert it to a byte array before decrypting it. We are re-using the randomData variable, which
contains the IV generated before the encrypt operation. As mentioned above, if you don’t pass in
the exact same IV, the decrypt operation will fail.

In the fourth section, the lines that do the encryption and decryption are the same, except for one
difference: when encrypting, you call CreateEncryptor; when decrypting, you call CreateDecryptor.

And finally, in the fifth section, we convert the binary data back to a string.

randomIV = key->IV;

key->set_IV(randomIV);

UTF8Encoding * utf8;
CryptoStream * ostr;
unsigned char inputBytes __gc[];
MemoryStream * memstr;

NAESession * session = new NAESession(username, password);
NAERijndaelKey * key = new NAERijndaelKey(session, "generic_aes_key");
key->Mode = CipherMode::CBC;
key->Padding = PaddingMode::PKCS7;

utf8 = new UTF8Encoding();
inputBytes = Convert::FromBase64String(sEncrypted);

memstr = new MemoryStream();
ostr = new CryptoStream(memstr, key->CreateDecryptor(randomData), Cryp-
toStreamMode::Write);
ostr->Write(inputBytes, 0, inputBytes->Length);
ostr->Close();

unsigned char tempChar __gc[] = memstr->ToArray();
String *sDecrypted = new String(utf8->GetChars(tempChar));
SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 86
Encrypting a String Using an RSA Key
This example will demonstrate how to encrypt a string with an RSA key. RSA is a stream cipher,
which means that you do not provide an IV, nor do you have to send data to the DataSecure in
chunks of any particular size. What you do have to take into consideration is that the RSA
algorithm can only encrypt data that is the same size as the key or smaller. Because the
DataSecure uses PKCS #1 padding for all RSA encrypt operations (which consumes 11 bytes of
data), the maximum amount of data you can encrypt with a 512 bit (64 bytes) RSA key is 53 bytes.

The first and second sections of the code sample are not described because the concepts that
underlie those sections have already been described above. The third section shows how to get
an instance of the key that will be used to perform the encrypt operation. The key we use in this
example is called “generic_rsa_key.”

The fourth section does the actual encryption. The code is pretty straightforward; just call the
Encrypt method of the key and pass in the data you want to encrypt. The false flag indicates that
OAEP padding should not be used; this is because the DataSecure uses PKCS #1 padding
instead. The encrypted bytes are converted to Base64 and stored in the variable sEncrypted,
which will be used in the decrypt example later.

Decrypting a String Using an RSA Key
The sample code for decryption with an RSA key follows the logic of the encryption quite closely.
Because sEncrypted is holding a Base64 value, we must convert that back to binary bytes. Then
we get an instance of the key that was used for the encryption. Like the encrypt operation, the
code for decryption is quite straightforward. Just call Decrypt passing in the ciphertext and a false
flag to indicate that OAEP padding should not be used.

UTF8Encoding * utf8;
unsigned char inputBytes __gc[];

utf8 = new UTF8Encoding();
inputBytes = utf8->GetBytes("abcd"); // Convert input string to bytes

NAESession * session = new NAESession(username, password);
NAERSAKey * key = new NAERSAKey(session, "generic_rsa_key");
// this assumes that you will use a key called “generic_rsa_key” that is
on the server.

String *sEncrypted = Convert::ToBase64String(key->Encrypt(inputBytes,
false));
SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 87
Encrypting a File
In previous examples, the data size was small enough that we only had to send one chunk of data
to the server. In this example, though, we’ll assume that the file is large enough that we need to
send multiple chunks. The code sample below is broken into numbered sections. Again, the
functions that have already been illustrated are not described in any detail in this example.

The list below shows how some of the more important variables are used.

• fSource – stream for reading plaintext data from the input file.

• fDestination – stream for writing ciphertext from the output file.

• count – used in a while loop to determine when to do the final block of encryption after the
entire input file has been read.

• inputChar – buffer to hold plaintext data read from the input file.

• encryptedChar – buffer to hold the ciphertext.

• dataSize – the size of the data chunks sent to the DataSecure.

• encryptedCount – indicates how many bytes of ciphertext were produced after encrypting
each chunk of data.

The first section creates a session object and obtains an instance of a key.

The second section performs a check to see if the key object is using padding. If padding is used,
the ciphertext will be larger than the plaintext, which means that the size of the encrypted
character buffer (dataSize) needs to increase by 16 bytes because we are using an AES key. If no
padding is used, then the encrypted character buffer can be the same size as the plaintext input
buffer.

The third section opens the input file and the destination file that will store the ciphertext.

UTF8Encoding * utf8;
unsigned char inputBytes __gc[];
unsigned char outputBytes __gc[];

utf8 = new UTF8Encoding();
inputBytes = Convert::FromBase64String(sEncrypted);
// Convert sEncrypted, which is the output value from encrypt.

NAESession * session = new NAESession(username, password);
NAERSAKey * key = new NAERSAKey(session, "generic_rsa_key");
// this assumes that you will use a key called "generic_rsa_key" that is
on the server.

outputBytes = key->Decrypt(inputBytes, false);
String *sDecrypted = new String(utf8->GetChars(outputBytes));
SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 88
The fourth section is where the actual encryption is done. Because we’ve structured this
example so that the client will send multiple chunks of data, the code is a bit more involved than
the previous examples. The first line in section 4 is where you supply a value for the IV by calling
the CreateEncryptor method of the key object, passing in the IV as an argument. In the third line,
the first chunk of data is read from the input stream and stored in the inputChar buffer. The number
of bytes read is stored in the count variable. The fourth line begins a while loop with three steps:
(1) encrypt the data in the input buffer, (2) write the ciphertext to the output stream, and (3) read
another data chunk from the input stream.

The TransformBlock method performs the encryption and returns the number of bytes encrypted.
The five values passed into the TransformBlock method are: input buffer, input offset, number of
bytes to encrypt, output buffer, and output offset.

Note: The ProtectApp for .NET’s buffer size limit is 150,000 bytes. To process data larger than
this limit, you must make multiple calls to the TransformBlock method.

Next, the encrypted output buffer is written to the output stream. After the ciphertext is written out,
data is once again read from the input stream. The while loop continues until all the data has been
read from the input stream. Once the last block of data is read, the TransformFinalBlock method is
called, and then the last chunk of ciphertext is written to the output stream.

The fifth section does the necessary cleanup (such as closing streams and files).

void encryptFile(String * inputFileName, String * encryptedFileName, int
dataSize, Byte [] ivBytes) {

Byte inputChar[];
Byte encryptedChar[];
Byte ivBytes[];
FileStream * fSource;
FileStream * fDestination;
int count;
int encryptedCount;
ICryptoTransform * enc;

// 1. It is assumed that the mode and padding for the key instance
have already been set appropriately.

NAESession * session = new NAESession(username, password);
NAERijndaelKey *key = new NAERijndaelKey(session, "generic_aes_key");

// 2. Create input & output buffers. Check if key object uses padding.
inputChar = new Byte[dataSize];
if (key->Padding == PaddingMode::None)

encryptedChar = new Byte[dataSize];
else

encryptedChar = new Byte[dataSize+16];
SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 89
Decrypting a File
Because the logic of the decrypt operation follows the encrypt operation so closely, we will not go
into as much detail describing each step of the code sample below. Instead, we will highlight a few
things that are different. The main difference is that in the encrypt example we increased the buffer
size to accommodate the larger data. When decrypting data, the plaintext will be either the same
size or smaller than the ciphertext; therefore, there is no need to perform the same check that we
did in the encrypt operation. Otherwise, the code sample is almost identical to the encrypt example
directly above, with small exceptions, like the files you open and the arguments you pass in to the
various methods. For example, instead of calling CreateEncryptor, you will call CreateDecryptor.

// 3. Open files.
fSource = File::OpenRead(inputFileName);
fDestination = File::Create(encryptedFileName);

// 4. Do encryption.
enc = key->CreateEncryptor(ivBytes);
try {

count = fSource->Read(inputChar, 0, dataSize);
while (count > 0) {

encryptedCount = enc->TransformBlock(inputChar, 0, count,
encryptedChar, 0);
fDestination->Write(encryptedChar, 0, encryptedCount);
count = fSource->Read(inputChar, 0, dataSize);

}
encryptedChar = enc->TransformFinalBlock(inputChar, 0, count);
// Final block
fDestination->Write(encryptedChar, 0, encryptedChar->Length);

}
catch (NAEException * e) {

printf(“Failed to encrypt the input file.”);
exit(1);

}
// 5. Clean up
if (fSource)

fSource->Dispose();
if (fDestination)

fDestination->Dispose();
}

SAFENET PROTECTAPP FOR .NET USER GUIDE

ENCRYPTING AND DECRYPTING DATA 90
void decryptFile(String * encryptedFileName, String * outputFileName,
int dataSize, Byte [] ivBytes) {

Byte inputChar[];
Byte decryptedChar[];
Byte ivBytes[];
FileStream * fSource;
FileStream * fDestination;
int count;
int decryptedCount;
ICryptoTransform * dec;
// 1. It is assumed that the mode and padding for the key
// instance have already been set appropriately.
NAESession * session = new NAESession(username, password);
NAERijndaelKey * newKey = new NAERijndaelKey(session,
"generic_aes_key");
// 2. Create buffer. The decrypted text will be smaller than
// the ciphertext; therefore, there's no need to perform the
// check we did in the encrypt operation.
inputChar = new Byte[dataSize];
decryptedChar = new Byte[dataSize];
// 3. Open files.
fSource = File::OpenRead(encryptedFile);
fDestination = File::Create(outputFileName);
// 4. Start decryption.
dec = key->CreateDecryptor(ivBytes);
try {

count = fSource->Read(inputChar, 0, dataSize);
while (count > 0) {

decryptedCount = dec->TransformBlock(inputChar, 0, count,
decryptedChar, 0);
fDestination->Write(decryptedChar, 0, decryptedCount);
count = fSource->Read(inputChar, 0, dataSize);

}
decryptedChar = dec->TransformFinalBlock(inputChar, 0, count);
// Final block
fDestination->Write(decryptedChar, 0, decryptedChar->Length);

}
catch (NAEException * e) {

printf(“Failed to decrypt the input file.”);
exit(1);

}
// 5. Clean up
if (fSource)

fSource->Dispose();
if (fDestination)

fDestination->Dispose();
SAFENET PROTECTAPP FOR .NET USER GUIDE

CHAPTER 16

Generating a MAC
This chapter contains the following sections:

Creating a MAC 91

Creating a MAC
This example is similar to the other examples we've presented thus far. To use the ProtectApp for
.NET to create a MAC requires that you create a session object and obtain an instance of a key.
Again, we create a CryptoStream object, and we set the mode to Write. Because this stream is not
being linked to another stream, we have to pass in Stream::Null. The line where the actual MAC is
created is similar to previous encrypt and decrypt examples: call the Write method of the
CryptoStream object and pass in the data you want to MAC. The MAC will be stored in the Hash
property of the key object. In order to use the same key to create another MAC, you have to call
the Initialize method of the key first.

NAESession * session = new NAESession(username, password);
NAEHMACSHA1 * key = new NAEHMACSHA1(session, "generic_hmac_key");
// this assumes that you will a key called "generic_hmac_key"
// that is on the server.

CryptoStream* cs = new CryptoStream(Stream::Null, key, CryptoStream-
Mode::Write);

cs->Write(data, 0, data->Length);
cs->Close();
Byte result[] = key->Hash;
key->Initialize(); // Reset.

CHAPTER 17

Using ProtectApp for .NET API
This chapter describes the functions available in the ProtectApp for .NET, and provides
deployment information you’ll need to use these functions effectively.

This chapter contains the following sections:

Enabling Users to Perform Administrative Operations 92

Overview 92

Thread Safety 93

Exceptions 93

Supported Functions 93

Enabling Users to Perform Administrative Operations
Using the Allow Key and Policy Configuration Operations checkbox on the DataSecure page
lets you limit the operations that a user can perform through the ProtectApp for .NET. This option
must be enabled for you to create, delete, import, and export keys from ProtectApp for .NET.

Overview
The ProtectApp for .NET supports a subset of the standard .NET functions supported by Microsoft.
The classes, as implemented by SafeNet, are for the most part consistent with the standard
Microsoft implementation. This section provides a reference for the classes and interfaces that
make up the ProtectApp for .NET. In general, you can assume that the Microsoft .NET
documentation applies, unless otherwise noted. Wherever the SafeNet implementation differs
from the Microsoft implementation, it is noted.

All classes in the ProtectApp for .NET are written in managed C++; you can use the same classes
for VB.NET and C#, after making appropriate translations in the syntax.

All classes in ProtectApp for .NET are part of the namespace Ingrian.Security.Cryptography

USING PROTECTAPP FOR .NET API 93
Thread Safety
The ProtectApp for .NET complies with the Microsoft .NET specification with respect to thread
safety; however you should be careful to ensure that two threads do not perform operations that
modify the internal state of the same object at the same time. Take for example a scenario where
two threads want to perform an encrypt operation simultaneously. As long as the two threads are
not calling the same Crypto Transform at the same time, the encrypt operations will proceed
normally. However, if the two threads are trying to use the same Crypto Transform simultaneously,
then the two threads will not have the desired outcome.

Thread–safe:

• Thread 1: cryptoTransform1 -> TransformBlock(...)

• Thread 2: cryptoTransform2 -> TransformBlock(...)

Not Thread-safe:

• Thread 1: cryptoTransform1 -> TransformBlock(...)

• Thread 2: cryptoTransform1 -> TransformBlock(...)

Exceptions
The ProtectApp for .NET returns the standard Microsoft .NET Exceptions. If you do not understand
the error returned by the application, you should check the log file. You can use the events logged
by the DataSecure to help you understand the condition that caused the error.

Supported Functions
The sections below list the public functions provided by the ProtectApp for .NET. There are four
types:

• Supporting Calls

• Connection Calls

• Keys-related APIs

• MAC/Hash-related APIs

Supporting Calls
This section describes the following classes:

• NAEException
• NAERandomNumberGenerator
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 94
NAEException
This is the generic exception that might be thrown by our .NET classes. You cannot create an
instance of this exception, but you can catch it in a try/catch block.

This class extends System.Security.Cryptography.CryptographicException

NAERandomNumberGenerator
This class can be used to generate random bytes. The largest number of random bytes you
can generate is 124000.

This class extends System.Security.Cryptography.RandomNumberGenerator

Constructors

Methods

Connection Calls
This section describes the NAESession class.

NAESession
This class represents a single session to a DataSecure. It is used by other NAE classes to send
data to and retrieve data from the server. It is also used to get keys and certificates from the
DataSecure.

Constructor Description

NAERandomNumberGenerator (NAE
Session* Session);

Creates a new instance of the random number generator.

Method Description

static void GetBytes (NAESession*
Session, unsigned char Data __gc[]);

Fills the Data buffer with random bytes using the Session to make
a connection to the server.

static void GetNonZeroBytes
(NAESession* session, unsigned char
Data __gc[]);

Fills the Data buffer with random non-zero bytes using the Session
to make a connection to the server.

virtual void GetBytes (unsigned char
Data __gc[]) {GetBytes(_session,
Data);}

Same as superclass, but may throw an NAEException.

virtual void GetNonZeroBytes
(unsigned char Data __gc[])
{GetNonZeroBytes(_session, Data);}

Same as superclass, but may throw an NAEException.
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 95
This class extends System.Security.Cryptography.Cryptographic.IDisposable

Constructors

Properties

Methods

Constructor Description

NAESession(); Creates a new global session.

NAESession(String* Username, String*
Password);

Creates a new session and authenticates as the username
provided.

NAESession(String* Username, String*
Password, String* Passphrase);

Creates a new session and authenticates it if possible, and sets a
passphrase for the persistent store.

NAESession(String* Passphrase) Creates a new and unauthenticated session and sets a
passphrase for the persistent store.

Properties Description

String* Username (read) Username of the authenticated user; null if the session is
global.

Method Description

String* GetKeyNames() __gc[]; Retrieves a list of key names that are accessible by the
authenticated user.

NAEKey* GetKey(String* KeyName); Retrieves the key from the server. You must cast NAEKey into the
appropriate key type.

void DeleteKey(NAEKey* Key); Deletes the specified key from the DataSecure.

void DeleteKey(String* KeyName); Deletes a key named KeyName from the server.

void Dispose() Dispose of the object.

void ImportCertificate (String
*certName, bool deletable, bool
exportable, Byte certBytes[],
SecureString* password);

Imports a certificate to the DataSecure.

unsigned char ExportCertificate
(String* certName) __gc[];

Exports a certificate from the DataSecure in the default (PEM)
format. This method ignores any private key associated with the
certificate.

unsigned char ExportCAChain (String*
CaName) __gc[];

Exports a CA chain from the DataSecure.
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 96
Key-related APIs
This section describes the following classes:

• NAEAsymmetricKeyPermissions
• NAEDesKey
• NAEKey
• NAEKeySpec
• NAERijndaelKey
• NAERSAKey
• NAESymmetricKeyPermissions
• NAETripleDesKey

NAEAsymmetricKeyPermissions
This class represents the operations that a member of a group can perform using an RSA key.

Constructors

Properties

unsigned char
ExportCertificateByFormat(String*
certName,
NAEConstant::NAECertificateFormat
eformat, SecureString* password)
__gc[];

Exports a certificate from the DataSecure in the format specified in
eformat. Available formats are:

• PEM_PKCS1 - The certificate is exported in PEM format, the
private key is exported in PKCS#1 format.

• PEM_PKCS8 - The certificate is exported in PEM format, the
private key is exported in PKCS#8 format.

• PKCS12 - The certificate and private key are exported in
PKCS#12 format.

void DeleteCertificate(String*
certName);

Deletes the certificate from the DataSecure. (This method can also
be used to delete keys.)

Note: The certificate must be flagged as deletable.

Constructor Description

NAEAsymmetricKeyPermissions
(String* Group, bool CanUsePrivate,
bool CanUsePublic, bool CanSign,
bool CanVerify)

Creates a new permission object for a group.

Properties Description

String* Group (read) Retrieves the group name from the permissions object.

Method Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 97
NAEDesKey
This class implements the DES algorithm. This class extends System.Security.Crypto-
graphy.DES and System.Security.Cryptography.NAESymmetricKey.

Constructors

Properties

Methods

bool CanUsePrivate (read & write) True if members of the group specified in the string
immediately above can use the private key to decrypt.

bool CanUsePublic (read & write) True if members of the group specified in the string
immediately above can use the public key to encrypt.

bool CanSign (read & write) True if members of the group specified in the string
immediately above can use the key to sign data.

bool CanVerify (read & write) True if members of the group specified in the string
immediately above can use the key to verify signatures.

Constructor Description

NAEDesKey(NAESession* Session,
String* KeyName);

Creates a new instance of a DES key object that accesses the key
named KeyName on the DataSecure.

NAEDesKey(NAESession* Session); Creates a new key object with no key bytes. This key can then be
created on the DataSecure using GenerateKey() or ImportKey().

Properties Description

String* KeyName (read) Key name.

unsigned char Key __gc[] (read) Retrieves the key bytes. Throws an NAEException if the key
is not exportable. Any attempt to set this property will throw a
NotImplementedException.

int Feedback Not supported.

boolean IsDeletable (read & write) True if the key can be deleted. Can only be set if the
key does not exist on the DataSecure.

boolean IsExportable (read & write) True if the key can be exported. Can only be set if
the key does not exist on the DataSecure.

NAESymmetricKeyPermissions*
GroupPermissions __gc[]

(read & write) Set group permissions for the key. Throws an
exception if the key already exists on the DataSecure.

Method Description

void GenerateKey(String* KeyName); Creates a new key on the DataSecure.

Properties Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 98
Important! When using DES keys with no padding, the plaintext must be greater than 0 bytes.

NAEKey
All NAE key classes implement this interface. It resides in the following namespace:
System.Security.Cryptography.

Properties

NAEKeySpec
All NAE key classes implement this interface. It resides in the following namespace:
System.Security.Cryptography.

Properties

void ImportKey(String* KeyName,
unsigned char KeyBytes __gc[]);

Imports the key to the DataSecure. KeyBytes refers to the raw key
bytes of the key. If necessary, parity bits are set by this method.

ICryptoTransform* CreateDecryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateDecryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

ICryptoTransform* CreateDecryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[]);

Not supported; use CreateDecryptor() or CreateDecryptor(IV)
instead.

ICryptoTransform* CreateEncryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateEncryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

ICryptoTransform* CreateEncryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[])

Not supported; use CreateEncryptor() or CreateEncryptor(IV)
instead.

Properties Description

String* KeyName (read) Retrieve the key name.

String CyptoAlgName (read) Retrieves the key algorithm.

bool IsExportable (read & write) True if key can be exported.

bool IsDeletable (read & write) True if key can be deleted.

void GenerateKey(String* KeyName) If no key named KeyName exists on the DataSecure, this method
will create one.

Properties Description

int KeySize (read & write) Retrieves the key size.

Method Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 99
NAERijndaelKey
This class implements the AES algorithm. This class extends System.Security.Crypto-
graphy.Rijndael and System.Security.Cryptography.NAESymmetricKey.

Constructors

Properties

Methods

bool IsExportable (read & write) True if the key can be exported.

bool IsDeletable (read & write) True if the key can be deleted.

Constructor Description

NAERijndaelKey(NAESession*
Session, String* KeyName);

Creates a new instance of an AES key object that accesses the
key KeyName on the DataSecure.

NAERijndaelKey(NAESession*
Session);

Creates a new key object with no key bytes. This key can then be
created on the DataSecure using GenerateKey() or ImportKey().

Properties Description

String* KeyName (read) Key name.

unsigned char Key __gc[] (read) Retrieves the key bytes. Throws an NAEException if the
Key is not exportable. Any attempt to set this property will throw a
NotImplementedException.

int Feedback Not supported.

boolean IsDeletable (read & write) True if the key can be deleted. Can only be set if the
key does not exist on the DataSecure.

boolean IsExportable (read & write) True if the key can be exported. Can only be set if
the key does not exist on the DataSecure.

NAESymmetricKeyPermissions*
GroupPermissions __gc[]

(read & write) Set group permissions for the key. Throws an
exception if the key already exists on the DataSecure.

Method Description

void GenerateKey(String* KeyName); Creates a new key on the DataSecure.

void ImportKey(String* KeyName,
unsigned char KeyBytes _gc[]);

Imports the key to the DataSecure. KeyBytes refers to the raw key
bytes of the key. If necessary, parity bits are set by this method.

ICryptoTransform* CreateDecryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateDecryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

Properties Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 100
Important! When using AES keys with no padding, the plaintext must be greater than 0 bytes.

NAERSAKey
This class implements the RSA algorithm. This class extends System.Security.Crypto-
graphy.RSA and System.Security.Cryptography.NAEKey.

Constructors

Properties

Methods

ICryptoTransform* CreateDecryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[])

Not supported; use CreateDecryptor() or CreateDecryptor(IV)
instead.

ICryptoTransform* CreateEncryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateEncryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

ICryptoTransform* CreateEncryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[])

Not supported; use CreateEncryptor() or CreateEncryptor(IV)
instead.

Constructor Description

NAERSAKey(NAESession* Session,
String* KeyName);

Creates a new instance of an RSA key object that accesses the
key named KeyName on the DataSecure.

NAERSAKey(NAESession* Session); Creates a new key object with no key bytes. This key can then be
created on the DataSecure using GenerateKey() or ImportKey().

Properties Description

String* KeyName (read) Key name.

boolean IsDeletable (read & write) True if the key can be deleted. Can only be set if the
key does not exist on the DataSecure.

boolean IsExportable (read & write) True if the key can be exported. Can only be set if
the key does not exist on the DataSecure.

NAEAsymmetricKeyPermissions*
GroupPermissions __gc[]

(read & write) Set group permissions for the key. Throws an
exception if the key already exists on the DataSecure.

SignatureAlgorithm Not supported

Method Description

void GenerateKey(String* KeyName); Creates a new key on the DataSecure.

Method Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 101
Important! When using RSA keys, the data you encrypt must be greater than 0 bytes.

Note: The following methods from the RSACryptoServiceProvider class are not supported:

- FromXmlString

- SignData

- SignHash

- unsigned char SignData(unsigned char buffer __gc[], Object* halg)
__gc[];

- bool VerifyData(unsigned char buffer __gc[], Object* halg,
unsigned char signature __gc[]);

- unsigned char SignHash(unsigned char rgbHash __gc[], String* str)
__gc[];

- bool VerifyHash(unsigned char rgbHash __gc[], String* str,
unsigned char rgbSignature __gc[]);

Note: The following method from the RSA class is not supported:

- FromXmlString

NAESymmetricKeyPermissions
This class represents the operations that a member of a group can perform with a particular key. It
resides in the following namespace: System.Security.Cryptography

virtual RSAParameters
ExportParameters (bool
includePrivateParameters);

Retrieves the key bytes. Throws an NAEException if the key is not
exportable. If the boolean value includePrivateParameters is true,
both the public and private parts of the key are exported. If the
value is false, only the public part of the key are exported.

void ImportKey(String* KeyName,
RSAParameters RSAParam);

Imports the key to the DataSecure.

void ImportKey(String* KeyName,
String* xmlString);

Imports the key to the DataSecure from an XML string.

unsigned char * Decrypt(unsigned char
value __gc[], bool fOAEP) __gc[]

Decrypts data. fOAEP must be false. See
RSACryptoServiceProvider for more info.

unsigned char* DecryptValue(unsigned
char value __gc[])

Not supported. Use Decrypt instead.

unsigned char * Encrypt(unsigned char
value __gc[] bool fOAEP) __gc[]

Encrypts data. fOAEP must be false. See
RSACryptoServiceProvider for more info.

unsigned char* EncryptValue(unsigned
char value __gc[] bool fOAEP)

Not Supported. Use Encrypt instead.

Method Description
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 102
Constructors

Properties

NAETripleDesKey
This class implements the 3DES algorithm.This class extends System.Security.Crypto-
graphy.TripleDES and System.Security.Cryptography.NAESymmetricKey.

Constructors

Properties

Constructor Description

NAESymmetricKeyPermissions(String*
Group, bool CanEncrypt, bool
CanDecrypt)

Creates a new permission object for a group.

Properties Description

String* Group (read) Retrieve the group name from the permissions object.

boolean CanEncrypt (read & write) True if members of the group specified in the string
immediately above can encrypt using this key; false otherwise.

boolean CanDecrypt (read & write) True if members of the group specified in the string
immediately above can decrypt using this key; false otherwise.

Constructor Description

NAETripleDesKey(NAESession*
Session, String* KeyName);

Creates a new instance of a 3DES key object that accesses the
key named KeyName on the DataSecure.

NAETripleDesKey(NAESession*
Session);

Creates a new key object with no key bytes. This key can then be
created on the DataSecure using GenerateKey() or ImportKey().

Properties Description

String* KeyName (read) Key name.

unsigned char Key __gc[] (read) Retrieves the key bytes. Throws an NAEException if the key
is not exportable. Any attempt to set this property will throw a
NotImplementedException.

int Feedback Not supported.

boolean IsDeletable (read & write) True if the key can be deleted. Can only be set if the
key does not exist on the DataSecure.

boolean IsExportable (read & write) True if the key can be exported. Can only be set if
the key does not exist on the DataSecure.

NAESymmetricKeyPermissions*
GroupPermissions __gc[]

(read & write) Set group permissions for the key. Throws an
exception if the key already exists on the DataSecure.
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 103
Methods

Important! When using DESede keys with no padding, the data you encrypt must be greater
than 0 bytes.

MAC/Hash-related APIs
This section describes the following classes:

• NAEKeyedHashPermissions
• NAEHMACSHA1

NAEKeyedHashPermissions
This DataSecure–specific class represents the operations that a member of a group can perform
using a particular HMAC key.

Constructors

Method Description

void GenerateKey(String* KeyName); Creates a new key named KeyName on the DataSecure.

void ImportKey(String* KeyName,
unsigned char KeyBytes __gc[]);

Imports the key to the DataSecure. KeyBytes refers to the raw key
bytes of the key. If necessary, parity bits are set by this method.

ICryptoTransform* CreateDecryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateDecryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

ICryptoTransform* CreateDecryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[]);

Not supported; use CreateDecryptor() or CreateDecryptor(IV)
instead.

ICryptoTransform* CreateEncryptor(); Same as superclass, but might throw an NAEException.

ICryptoTransform* CreateEncryptor
(unsigned char IV __gc[]);

Creates a new ICryptoTransform using the current key and the
specified IV. Does not modify the IV property of the instance.

ICryptoTransform* CreateEncryptor
(unsigned char KeyBytes __gc[],
unsigned char IV __gc[]);

Not supported; use CreateEncryptor() or CreateEncryptor(IV)
instead.

Constructor Description

NAEKeyedHashPermissions (String*
Group, bool CanMac, bool CanVerify)

Creates a new permission object for a group.
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 104
Properties

NAEHMACSHA1
This class implements the HmacSHA1 algorithm. This class extends System.Security.
Cryptography.HMACSHA1 and System.Security.Cryptography.NAEKey.

Constructors

Properties

Methods

Properties Description

String* Group (read) Retrieves the group name from the permissions object.

bool CanMac (read & write) True if members of the group specified in the string
immediately above can use the key to sign data.

bool CanVerify (read & write) True if members of the group specified in the string
immediately above can use the key to verify signatures.

Constructor Description

NAEHMACSHA1 (NAESession*
Session, String* KeyName);

Creates a new instance of an HmacSHA1 key object that accesses
the key names KeyName on the DataSecure.

NAEHMACSHA1 (NAESession*
Session);

Creates a new key object with no key bytes. This key can then be
created on the DataSecure using GenerateKey() or ImportKey().

Properties Description

String* KeyName (read) Key name.

unsigned char Key __gc[] (read) Retrieves the key bytes. Throws an NAEException if the key
is not exportable. Any attempt to set this property will throw a
NotImplementedException.

String* HashName Not supported. Hash is fixed to DataSecure implementation.

boolean IsDeletable (read & write) True if the key can be deleted. Can only be set if the
key does not exist on the DataSecure.

boolean IsExportable (read & write) True if the key can be exported. Can only be set if
the key does not exist on the DataSecure.

NAEKeyedHashPermissions*
GroupPermissions __gc[]

(read & write) Set group permissions for the key. Throws an
exception if the key already exists on the DataSecure.

Method Description

void GenerateKey (String* KeyName); Creates a new key on the DataSecure.

void ImportKey(String* KeyName,
unsigned char KeyBytes __gc[]);

Imports the key to the DataSecure. KeyBytes refers to the raw key
bytes of the key.

void Initialize(); Overridden to throw an NAEException if necessary.
SAFENET PROTECTAPP FOR .NET USER GUIDE

USING PROTECTAPP FOR .NET API 105
Notes

HmacSHA1keys can be between 128 and 256 bits. We recommend that the key size be at least
160 bits, and set the default at 160. (160 is the only size permitted when the appliance is operating
in FIPS mode.)

Adhere to the following guidelines when using these properties:

• CanReuseTransform – should always be true.

• CanTransformMultipleBlocks – should always be true.

• HashName – not supported.

• HashSize – gets the value of the computed hash code in bits.

• InputBlockSize – should always be 1.

• OutputBlockSize – should always be 1.
SAFENET PROTECTAPP FOR .NET USER GUIDE

Index

A
authenticating clients, configuring the

DataSecure 56

C
CA certificate

installing on server 60
CA certificates

clustering 26
ssl configuration 26

CanDecrypt property 102
CanEncrypt property 102
classes

NAEAsymmetricKeyPermissions 96
NAEDesKey 97
NAEException 94
NAEHMACSHA1 104
NAEKeyedHashPermissions 103
NAERandomNumberGenerator 94
NAERijndael 99
NAERijndaelKey 99
NAESession 94
NAETripleDesKey 99

client certificate authentication 26
configuration 56

clustering
CA certificates 26

connection pooling
configuration 24

content restrictions 12
CreateDecryptor method 98, 99, 103
CreateEncryptor method 98, 100, 103
cryptographic operations

asymmetric encryption 12
digital signatures 12
MAC 12
MAC Verify 12
random number generation 12
symmetric encryption 12

CyptoAlgName property 98

D
data

restrictions 12
DataSecure, authenticating clients 56
Decrypt method 101

DecryptValue method 101

E
Encrypt method 101
EncryptValue method 101
exceptions 93

G
GenerateKey method 97, 98, 99, 103
GroupPermissions property 99, 102
GroupPermissionsproperty 97

H
hardware requirements 11

I
ImportKey method 98, 99, 101, 103
IngrianNAE.properties

testing your installation 20
installation

uninstalling the ProtectApp for .NET 14
Interface

NAEKey 97
IsDeletable 97, 99, 102
IsDeletable property 98
IsExportable 97, 98, 99, 102

K
Key property 97, 99, 102
KeyName property 97, 98, 99, 102

L
logging

errors 93

M
methods

CreateDecryptor 98, 99, 103
CreateEncryptor 98, 100, 103
Decrypt 101
DecryptValue 101
Encrypt 101
EncryptValue 101
GenerateKey 97, 98, 99, 103
ImportKey 98, 99, 101, 103
SAFENET PROTECTAPP FOR .NET USER GUIDE

N
NAEAsymmetricKeyPermissions class 96
NAEDesKey class 97
NAEException class 94
NAEHMACSHA1 class 104
NAEKey Interface 97
NAEKeyedHashPermissions class 103
NAERandomNumberGenerator class 94
NAERijndaelKey class 99
NAESession class 94
NAETripleDesKey class 99

P
parameters

Size_of_Connection_Pool 24
performance

connection timeout 24
timeout configuration 24

persistent connection configuration 23
properties

CanDecrypt 102
CanEncrypt 102
CryptoAlgName 98
GroupPermissions 97, 99, 102
IsDeletable 97, 98, 99, 102
IsExportable 97, 98, 99, 102
Key 97, 99, 102
KeyName 97, 98, 99, 102

protocol configuration 23

R
requirements

hardware and software 11

S
Size_of_Connection_Pool parameter 24
software requirements 11
SSL

client certificate 26
client private key passphrase 27
server CA certificate 26

System Properties
client certificate authentication 26
client private key passphrase 27
connection pooling 24
connection retry 25
persistent connections 23
protocol configuration 23
reading from the registry 30
setting 22
timeout configuration 24

T
testing your installation

IngrianNAE.properties file 20
Timeout Configuration 24
trusted CA list profile 60

U
uninstalling the ProtectApp for .NET 14

W
Windows Registry 22

reading system properties from 30
sample configuration 31
SAFENET PROTECTAPP FOR .NET USER GUIDE

	SafeNet ProtectApp for .NET User Guide
	Table of Contents
	About This Guide
	Using This Guide
	Documentation Conventions
	Code Samples
	Notes and Cautions

	Overview
	General System Architecture
	Hardware and Software Requirements
	Supported Cryptographic Operations
	Supported Content

	Installing ProtectApp for .NET
	Obtaining ProtectApp for .NET Software
	Installing ProtectApp for .NET
	The NAE_Properties_Config Registry Key
	The Installed Directory

	Upgrading ProtectApp for .NET
	Properties File
	Examples Folder

	Repairing ProtectApp for .NET
	Uninstalling ProtectApp for .NET
	The Sample Application
	Compiling the Sample Application with Visual Studio 2010
	Before You Begin

	Configuring the Properties File
	Editing the Properties File
	Renaming the Properties File
	The Parameters
	Version
	NAE_IP
	Port
	Protocol
	Use_Persistent_Connection
	Size_of_Connection_Pool
	Connection_Timeout
	Connection_Idle_Timeout
	Connection_Retry_Interval
	Cluster_Synchronization_Delay
	EdgeSecure_Name
	Cipherspec
	CA_File
	Cert_File
	Key_File
	Passphrase
	Symmetric_Key_Cache_Enabled
	Symmetric_Key_Cache_Expiry
	Persistent_Cache_Enabled
	Persistent_Cache_Directory
	Persistent_Cache_Expiry_Keys
	Persistent_Cache_Max_Size
	Log_Level
	Log_File
	Log_Rotation
	Log_Size_Limit

	Reading System Properties From the Windows Registry
	Setting Properties in the Registry via the Sample Configuration
	Manually Setting Properties in the Registry

	Connecting to a Server
	Overview
	How it Works
	Related IngrianNAE.properties Parameters

	Connection Pooling
	Connection Pools
	How it Works
	Related IngrianNAE.properties Parameters
	Examples

	Load Balancing Groups
	Overview
	How it Works
	Related IngrianNAE.properties Parameters
	Examples

	Multi-Tier Load Balancing
	Overview
	How it Works
	Related IngrianNAE.properties Parameters
	Examples

	Setting up SSL
	SSL Overview
	SSL Configuration Procedures
	Creating a Local CA
	Creating a Server Certificate Request on the Management Console
	Signing a Server Certificate Request with a Local CA
	Importing a Server Certificate to the DataSecure Appliance
	Downloading the Local CA Certificate

	SSL Walkthrough for SafeNet Clients
	SSL with Client Certificate Authentication Overview
	SSL with Client Certificate Authentication Procedures
	Generating a Client Certificate Request with req.exe
	Signing a Certificate Request and Downloading the Certificate
	Installing a CA Certificate on the Server
	Adding a CA to a Trusted CA List Profile

	SSL with Client Certificate Authentication Walkthrough for DataSecure Clients

	Creating an NAESession
	Creating a Global Session to a DataSecure
	Creating an Authenticated Session to a DataSecure

	Working with Keys
	Listing All Keys Available on the DataSecure
	Obtaining an Instance of a Key
	Obtaining an Instance of a Key - Alternate Method
	Deleting a Key Using the Key Name
	Creating a Key
	Importing a Symmetric Key
	Importing an Asymmetric Key
	Setting the Key Mode and Padding

	Using Versioned Keys
	Overview
	Creating a Versioned Key
	Creating a New Version
	Activate, Restrict, or Retire a Version
	Using a Versioned Key to Encrypt, Sign, and MAC
	Using a Versioned Key to Decrypt, SignV, and MACV

	Symmetric Key Caching
	Overview
	Supported Functions

	How it Works
	Related IngrianNAE.properties Parameters
	Logging

	Persistent Key Caching
	Overview
	Supported Functions
	How it Works
	Related IngrianNAE.properties Parameters
	Logging
	Tips
	Pre-Loading Keys
	Troubleshooting

	Working with Certificates
	Importing a Certificate
	Exporting a Certificate
	Exporting a CA Chain
	Deleting a Certificate

	Encrypting and Decrypting Data
	Encrypting a String Using an AES Key
	Decrypting a String Using an AES Key
	Encrypting a String Using an RSA Key
	Decrypting a String Using an RSA Key
	Encrypting a File
	Decrypting a File

	Generating a MAC
	Creating a MAC

	Using ProtectApp for .NET API
	Enabling Users to Perform Administrative Operations
	Overview
	Thread Safety
	Exceptions
	Supported Functions
	Supporting Calls
	Connection Calls
	Key-related APIs
	MAC/Hash-related APIs

	Index

